

ham

NOVEMBER 1975

this month

- RTTY line-end indicator22
- tunable audio filter 28
- sstv preamplifier 36
- binaural CW reception 46
- master frequency oscillator 50

OUalitre: PRIICE CUSHCRAFT ANTENNAS OFFER YOU BOTH

Don't be misled by our prices . . . they are based on experience, large quantity buying of materials, great engineering and efficient office personnel. We are happy hams trying to hold the line on prices for you. So . . . whypay more when you can get the best for less!

FM 2 METER ANTENNAS

POWER PACK

The big signal (22 element array) for 2 meter FM uses two A147-11 yagis with a horizontal mounting boom, coaxial harness and all hardware.

4-6-11 ELEMENT YAGIS
The standard of comparison in VHF-UHF communications, now cut for FM and vertical polarization. There are models covering the $450 \mathrm{MHz}, 220 \mathrm{MHz}$ and 147 MHz bands. All are rated at 1000 watts with direct 52 ohm feed and PL-259 connectors.

IN STOCK WITH YOUR LOCAL DISTRIBUTOR

621 HAYWARD ST., MANCHESTER, N.H. 03103

Practically Perfect

ALPHA $7 \boldsymbol{\theta}$

MAXIMUM LEGAL POWER HF LINEAR AMPLIFIER

- POWERFUL - Handles 2+ kilowatts PEP and 1 kilowatt average d-c input continuously - with ease.
- RUGGED - Traditional ALPHA quality . . . husky components, 8874 ceramic tubes, highly efficient cooling.
- FULL-COVERAGE 10 through 160 meters (with low-cost 160M option).
- CONVENIENT - Self-contained and lightweight, UPS-shippable.
- GUARANTEED for a full year like all ALPHA's.
- SURPRISINGLY LOW IN COST - ONLY \$795 direct from E.T.O.

ALPHA 76 … Uncompromised power and quality at minimum cost. THE PERFECT ANSWER TO PRACTICAL HIGH POWER

BE READY FOR PEAK WINTER CONDITIONS - Order now for earliest delivery. Call or write E.T.O. for full specifications and ordering information on the valuepacked powerhouse ALPHA 76, the NO-TUNE-UP ALPHA 374, the VHF ALPHA V74, and the ULTIMATE LINEAR, ALPHA $77 D$.

The most versatile transceivers

- Solid state SSB / CW
- 200 watts P. E.P. input
- No transmitter tuning
- The ultimate in sensitivity selectivity and overload immunity

AIILS 210x 215 x

PLUS EXTENDED FREQUENCY COVERAGE FOR MARS OPERATION WHEN USED WITH 10X CRYSTAL OSCILLATOR

$210 x / 215 x \ldots$	$\$ 649$.
AC Console $110 / 220 \mathrm{~V}$	$\$ 139$.
Portable AC Supply, $110 / 22 \mathrm{~V}$	$\$ 95$.

Portable AC Supply, 110/22V

Plug-in Mobile Kit $\$ 44$.
$10 \times$ Osc. Less Crystals $\$ 55$

For complete details see your Atlas dealer, drop us a card and we'll mail you a broch with dealer list.

November, 1975 volume 8 , number 11
staff
James R. Fisk, W1DTY editor-in-chief

Patricia A. Hawes, WN 1OJN assistant editor
J. Jay O'Brien, W6GO
fm editor
James A. Harvey, WAGIAK James W. Hebert, WA8OBG Joseph J. Schroeder, W9JUV

Alfred Wilson, W6NIF associate editors

Wayne T. Pierce, K3SUK
cover
T.H. Tenney. Jr., W1 NLB publisher

Fred D. Moller, Jr., WN1USO advertising manager
Cynthia M. Schlosser
assistant
advertising manager
offices
Greenvilite, New Hampshire 03048
Telephone: 603-878-1441
ham radio magazine is published monthly by
Communications Technology, Inc Greenville, New Hampshire 03048
subscription rates
U.S. and Canada: one vear, $\$ 8.00$ two vears, $\$ 13.00$; three vears, $\$ 18.00$

Worldwide one year, $\$ 10,00$ two years, $\$ 17.00$ three years, $\$ 24.00$.

Foreign subscription agents
Canada
Ham Radio Canada. Box 114, Goderich Ontario, Canada, N7A 3 YS

Europe.
Ham Radio Europe Box 444
19404 Upplands Vasby. SWeden France
Ham Radio France 20 bis, Avenue des Clarions 89000 Auxerre, France

United Kingdom Ham Radio UK Post Office Box 64, Harrow Middlesex HA3 6HS, England

African continent. Holland Radio, 143 Greenway Greenside, Johannesburg Republic of South Africa,

Copyright 1975 by Communications Technology, Inc Title registered at U.S. Patent Office Printed by Wellesley Press, Inc Framingham, Massachuset ts 01701 , USA

> Microfilm copies of current and back issues are available from
> University Microfilms Ann Arbor, Michigan 48103

Second-class postage paid at Greenville, N.H. 03048 and at additional mailing offices

8 high-performance uhf fm receiver Gerald F. Vogt, WA2GCF

18 SSB with TTL ICs
Peter J. Hampton, G4ADJ
22 RTTY line-end indicator
Robert M. Mendleson, W2OKO
28 tunable audio filter for CW communications
Kenneth E. Holladay, K6HCP
36 sstv preamplifier
Dr. Werner Berthold, DK 1 BF
38 crystal mixer
William H. King, W2LTJ
46 binaural CW reception
Donald E. Hildreth, WGNRW
50 varactor-controlled variable
frequency oscillator
M. A. Chapman, K6SDX

56 soldering-iron holder
Eugene L. Klein, W2FBW,
60. dipole antennas

Albert F. Lee, KH6HDM
66 Collins R390A modifications
Alexander M. MacLean, WA2SUT

4 a second look 68 ham notebook
126 advertisers index 78 new products
72 comments
126 reader service
115 flea market 6 stop press

Although MOS integrated circuits are finding widespread use in microprocessors, memories and other LSI (large-scale integration) applications, it appears that a relatively new form of bipolar logic, called $\mathbf{I}^{2} \mathrm{~L}$ (for integrated injection logic), can do everything its MOS rivals do - and probably better and cheaper. Although MOS manufacturers continue to squeeze more and more performance out of n channel MOS technology, some researchers believe that the high perform-ance-low cost characteristic of $I^{2} \mathrm{~L}$ will end the dominance of MOS circuits in new generations of equipment.

Another characteristic of $\mathrm{I}^{2} \mathrm{~L}$ which intrigues designers is its versatility: although it doesn't directly lend itself to analog functions, it is compatible with bipolar manufacturing techniques used for linear devices so linear and $I^{2} \mathrm{~L}$ can be combined on the same chip. Some digitallinear chips are already being developed, as are completely digital chips. In fact, according to one report, $I^{2} \mathrm{~L}$ is now being designed into more circuit types by IC makers than are all MOS and other bipolar techniques combined!

Originally formulated about four years ago at IBM's laboratories in Germany, and developed by Philips in the Netherlands, $I^{2} \mathrm{~L}$ achieves MOS-level circuit densities by using planar npn transistors upside down (the basic logic element is an
fig. 1. 1^{2} L logic gate uses inverted transistor. Operation is completely independent of resistors and speed depends only on injected base current.

inverter). A direct result is the automatic isolation of all collectors, while the emitters are common. Lateral pnp transistors inject current directly into the base of a multi-emitter npn transistor operating in the inverse mode (see fig. 1). The result is a very simple gate structure which dissipates little power and has propagation delays on the order of 10 nanoseconds. This performance is comparable to that of standard TTL gates. By using integrated Schottky diode clamps speed can be pushed down to about 1 ns , making $\mathrm{I}^{2} \mathrm{~L}$ as fast as low-power Schottky TTL -Schottky-clamped $1^{2} L$, however, consumes $1 / 100$ th the power and is ten times smaller (circuit densities of 85 gates per square millimeter are routine).

Since $1^{2} L$ units are powered through lateral pnp transistors, the circuitry is totally independent of resistors and can be operated over a wide speed range by simply varying the total current into the injector. Thus, the same $I^{2} \mathrm{~L}$ device can run at slow speed in a watch, for example, dissipating microwatts, or at high speed in a microprocessor, dissipating milliwatts.

Many of the large semiconductor firms, including Fairchild, Motorola and Texas Instruments, are working on largescale integration of $I^{2} L$ and some devices are already on the market including TI's SBP0400 4-bit $\mathrm{I}^{2} \mathrm{~L}$ microprocessor. A 4096-bit $1^{2} \mathrm{~L}$ random access memory may be available by the end of the year, and a 16-bit microprocessor with cycle times of less than 50 ns is expected sometime next year. No doubt MOS and TTL will be with us for a long time to come, but $I^{2} \mathrm{~L}$ promises complex logic systems that could not be built economically with the older technology.

Jim Fisk, W1DTY editor-in-chief

tcama

You Win Again!

You've been bugging us to modify the IC-22A for use with the DV-21, and we did it! We're giving you what you've been wanting in a new field modification package simple enough for anyone experienced in kit building or home brewing. You can now use our unique scanning digital synthesizer to complete your ICOM two meter station.

The DV-21 is the LED readout synthesizer that operates in 5 KHz steps over the $146-148 \mathrm{MHz}$ FM section of the two meter band, and even scans frequencies being used. Completely separate selection of the transmit or receive is as simple as touching the keys. When you transmit, the bright, easy to read LED's display your TX frequency. Release the mic switch, and the receive frequency is displayed. There are even two programable memories for your favorite simplex frequencies. You won't believe the features and versatility the DV-21 will add to your station.

We'll send you everything you need to make your modification: wire, coax cable, an extension/adapter cable with seven to nine pin capacity, and the active components. If you have neither the time nor the inclination to make your own connections, we will modify your radio for you at a nominal fee of $\$ 30.00$ with prepaid return.

To get your mod kit send $\$ 10.00$ to ICOM EAST, Inc. or ICOM WEST, Inc., and you will receive yours by return mail, prepaid.

Distributed by:

ICOM

ICOM WEST, INC.
Suite 3
13256 Northrup Way Bellevue, Wash. 98005 (206) 747-9020

ICOM EAST, INC.
Suite 307
3331 Towerwood Drive
Dallas, Texas 75234
(214) 620-2780

presstop

NEW CHIEF OF FCC'S AMATEUR AND CITIZENS DIVISION is John Johnston, K3BNS. The announcement was made during the FCC Forum at the ARRL National Convention in Reston, Virginia by FCC Safety and Special Services Bureau Chief, Charles Higginbotham, W3CAH. Charlie said the choice had been made official by the Commissioners only a few days earlier.

Johnston's Selection was a natural and will be widely welcomed by the Amateur fraternity. John had already established a fine track record with the Amateur and Citizens when he served there as Chief of the Rules and Legal Branch. He left Amateur and Citizens just a year ago to become Deputy Chief of the Spectrum Management Task Force. He originally joined the FCC in 1972.
"DE-REGULATION" will be the key word when Johnston picks up the reins at Amateur and Citizens. John plans to take a very hard look at the present rules to see where they can be relaxed to the benefit of both Amateur Radio and the Commission.

WARC 79 Working Group on Amateur Radio had its second full group meeting at Reston, with Prose Walker still in the Chairman's seat. Much of the all-day session was devoted to reports of the various task force chairmen, and it was obvious to the more than 30 attendees that the considerable effort that had already been invested was only a small part of the total job.

With Respect To Frequencies, the Working Group position is to strive for more spectrum in the HF bands both by making the bands we presently share with other services (and/or do not have at all in other parts of the world) exclusive worldwide Amateur bands, and by adding new Amateur bands. Proposed new HF bands would be $10.1-10.6 \mathrm{MHz}, 18.1-18.6 \mathrm{MHz}$, and $24-24.5 \mathrm{MHz}$. It was also proposed that 40 meters be extended to $7.5 \mathrm{MHz}, 20$ meters to 14.5 MHz , and 15 meters to 21.5 MHz . At the low end of the spectrum a totally new band in the $150-200 \mathrm{kHz}$ region will also be proposed. There is reason for hope that all or at least a good part of this expansion could be achieved, since some heavy users of the $H F$ bands are moving to satellites; however, other services will be going for more HF frequencies, too. In the VHF/UHF spectrum, competition is tougher and the picture less clear - we'll have problems there.

INVERTED SPLITS for additional two-meter repeaters in the northern California area were selected as standard at "Sacramento '75." Northern California thus fallows the lead of southern California, while the eastern seaboard goes the opposite way.

RIGHT-SIDE UP SPLITS were the choice of the Mid-Atlantic Repeater council at their meeting. Reasons were a wish to remain compatible with other East Coast areas, and encourage increased use of narrow-band gear.

AMSAT'S EDUCATIONAL BULLETINS via OSCAR 6 resumed in September and will continue throughout the school year on mornings (U.S.) of even numbered days. Bulletin stations will transmit to be heard about 29.5 MHz on appropriate morning orbits as indicated by an "E" following the orbit number in the predictions.

Orbital Predictions from both HR Report and W6PAJ's booklet are both more than adequately accurate despite on-the-air comments to the contrary. Current HR Report sheet is within a few seconds, while W6PAJ's (prepared much earlier in the year) is accurate to within about a minute.

MULTI-2000, the multi-mode vhf rig which has caused interference in the alrcraft band, is an offender primarily in its original version as imported by ITC, reports Mike Staal of KLM. The prime problem was with a spur +16.9 MHz from the signal frequency and Mike reports that this has been corrected in the later versions which bear the KLM nameplate. All KLM Multi-2000s are being checked out with a spectrum analyzer to confirm that they meet published spurious spees.

All Early Multi-2000s should be checked out with proper instrumentation. Mike has some helpful suggestions for owners of the earlier radios - call him at KLM, (408) 779-7363.

WORKLNG ALL STATES DURING 1976 will be rewarded by a very special Bicentennial WAS certificate from the ARRL. Only one award, for QSOs on any mode, any band will be offered.

With the HAL RVD-1005, what you see is what you get.

And you get more of what you expect from noiseless, trouble-free all solid-state TTY reception. The RVD-1005 converts the output of any TU into a clear, easy-to-read RTTY readout, The signal can be fed to a TV monitor* or, with slight modification, any standard TV receiver (Just imagine a 23 -inch teleprinter!), It's the beginning of enjoyable TTY communications and the end of electromechanical devices with all of their maintenance headaches. The display above points out the many reasons why the RVD-1005 makes all other TTY systems seem obsoleteand it's just part of the HAL lineup of quality, state-of-the-art RTTY components for the serious amateur.

The HAL DKB-2010 dual mode keyboard is another example. It allows you to transmit TTY or Morse-TTY at all standard data rates, and CW
between 8 and 60 WPM. You also get complete alphanumeric and punctuation keys, plus 10 other function keys, a "DE - call letters" key and a "QUICK BROWN FOX..." diagnostic key in both modes you have a three character buffer for bursting ahead (larger buffers optional); and in the CW mode you can adjust the dot-to-space ratio (weight) to your liking.

When we say what you see is what you get, you can count on getting all that and more, including quality construction throughout. So if you're into RTTY, join the ranks of amateurs the world over who are enjoying this hobby at its best-with professional gear at amateur prices from HAL-the leader in amateur RTTY equipment. Send today for the HAL products you want!

*RVD-2110 9-inch Monitor/TV shown is optional

\qquad (RVD-1005 Video Unit) Telephone: (217) 367.7373 \qquad
Charge Master Charge \#
Charge BankAmericard \#
M/C Interbank \# \qquad Card exp date
Please send me the HAL catalog

Name
Address
Call Sign
City/State/Zip
RVD-1005 Video Unit: \$575. RVD-2110 Monitor TV: \$150. DKB-2010 TTY/CW Keyboard: $\$ 425$.
All prices include USA shipping. Add $\$ 10$ each for air shipment. Illinois residents add 5% sales tax

high-performance

vhf fm receiver

Design and

construction of a versatile fm receiver for use on any of the amateur bands from 28
through 220 MHz
Are you looking for a compact, low-cost receiver to use with your new homebrew fm transmitter? Are you interested in trying fm without investing a lot of money right away for a transceiver? Do you need an extra fm receiver around the shack to monitor your local repeater or calling channel while you're operating on another frequency? This article describes a second-generation, solidstate vhf fm receiver which might be the answer. It is an improved version of an earlier receiver designed a few years ago ${ }^{1}$ and uses two circuit boards: a vhf converter board and an i-f/audio board. The basic fm communications receiver may be used for $28,50,144$ or 220 MHz (or adjacent commercial bands).

This new design includes the best features of its predecessor as well as refinements which improve selectivity and sensitivity, make construction and testing easier, and provide more flexibility. Built-in test points facilitate alignment and allow external signal strength and carrier frequency meters to be used.

Stable, cascode circuits are easily tuned and require no neutralization. The sensitivity of the receiver is about 0.2 to 0.4 $\mu \mathrm{V}$ for 20 dB quieting. Adjacent channel selectivity is about 90 dB beyond the desired $\pm 7.5 \mathrm{kHz}$ passband. Image rejection is 40 dB . Operating power is 13.6 Vdc at 60 to 200 mA , depending on audio level.

Construction and alignment details are organized in three sections. The i-f/ audio board is described first since it is straightforward and does not vary with the input frequency. Then the vhf converter board is described, along with variations for $10,6,2$, and $11 / 4$ meters. Finally, to demonstrate ideas for various receiver packages which can be based on the two basic boards, a short discussion of options is presented.

i-f and audio

The i-f/audio circuit (fig. 1) includes a sensitive and selective i-f amplifier, narrowband fm detector, audio amplifier and squelch circuitry. By including the proper external circuitry it may be used to build a single-channel vhf or uhf

The i-f/audio board used in the vhf $f m$ receiver. Murata 11-pole ceramic ladder filter is in lower left-hand corner.

receiver, a multi-channel receiver, or a scanning receiver. The 10.7 MHz input to the board has a three-pole L-C filter operating into a low-noise groundedbase preamplifier, Q1. The high gain cascode mixer (Q 2 and Q3) translates the input to a 455 kHz i-f with a selective $\pm 7.5 \mathrm{kHz}$ ceramic ladder filter providing 90 dB of adjacent channel selectivity and 40 dB image rejection. The 455 kHz i-f amplifier and limiter chain consists of five low-noise, high-gain transistor stages (Q5-Q9). The previous design used an IC - this discrete design provides improved operation, easier maintenance, and better metering.

The fm discriminator drives a special communications service 2 -watt audio amplifier IC, an SGS ATE TBA-820, which incorporates lowpass filtering and de-emphasis to minimize hiss on weak signals. A sensitive squelch circuit (Q10-Q11) detects any a-m noise in the 7 kHz region to determine if a carrier is present in the limiter circuit. A flutterproof circuit is used to prevent drop out of weak mobile stations. The audio circuit is set up so the user can change the volume control range or high-frequency response, if desired, to suit his own operating habits.

construction

Most pertinent construction details for the i-f/audio board are shown on the component location diagram (fig. 2). Following are details of coil assembly and other suggestions to facilitate proper assembly. The coils are wound on $10-32$ (about 5 mm diameter) plastic forms with carbonyl TH slugs. All are wound in a clockwise direction, as viewed from the top, using number 26 (0.4 mm) solderable wire. All turns are close-spaced as shown in fig. 3. This drawing is exaggerated for clarity, but all leads should be pulled tight. No fancy bends are required, and no coil dope is necessary. Holes in the base of the form are numbered as indicated for

reference when winding the coils. The coils can be prewound and then installed on the board with the keyways as shown. Primaries should be wound first, followed by the secondaries; then the capacitors, if any, are inserted through remaining holes in the base of the form.

Do not be overly concerned with coil winding. Neatness is not a requirement; the turns can overlap, and the windings don't have to be uniform. Secondary windings can be wound in a second layer over the primary or by continuing the first layer next to the primary. The only critical requirement is that primary and secondary of L1 and L3 must be correctly phased. (When the primary is finished at the tap, the secondary should start at the tap and be wound in the same [clockwise] direction.)

When the coil leads are inserted through the board, they should be started into the holes in the board while the coil form is spaced slightly away from the board; the form is then seated into place. Do not attempt to insert capacitor leads with the form tight
fig. 1. I-f and audio system (left) for the vhf fm receiver has input at 10.7 MHz and includes five-stage $\mathbf{4 5 5} \cdot \mathrm{kHz}$ i-f amplifier, squetch and two-watt ic audio amplifier. Filter FLI is an 11 -pole Murata CFS-455 ceramic ladder filter. Transformer T1 is a miniature $455-\mathrm{kHz}$ i-f transformer with the internal resonating capacitor removed. The audio power IC is an SGS ATES TBA-820.

L1 Terminals 3 to 4: 10-5/6 turns no. 26 (0.4 mm) on $10-32(5 \mathrm{~mm})$ slug-tuned form; terminals 5 to $6: 2-5 / 6$ turns no. 26 (0.4 mm)
L2 $12^{1 / 2}$ turns no. $26(0.4 \mathrm{~mm})$ on $10-32$ (5 mm) slug-tuned form
L3 Terminals 3 to 6: $111 / 2$ turns no. 26 (0.4 mm) on $10-32$ (5 mm) slug-tuned form; terminals 4 to 5: 3-1/6 turns no. 26 (0.4 mm)
L4 Primary, $15^{1 / 2}$ turns no. 26 (0.4 mm) on 10-32 (5 mm) slug-tuned form; secondary, $9-1 / 6$ turns no. $26(0.4 \mathrm{~mm})$ on same form

board is $2-3 / 4^{\prime \prime}$ wide (7 cm) by $41 / 2^{\prime \prime}(11.5 \mathrm{~cm})$ long.
against the board. After the coils are installed, application of heat from a very hot soldering iron for 10 to 15 seconds will automatically strip the wire. If you prefer, the leads may be stripped in the conventional way before installation. Do not solder-strip the leads unless the coil is mounted on the board as the leads will migrate into the plastic form.

Be careful, when installing the ceramic filter and the discriminator transformer, to seat them slowly by rocking to avoid lead stress. Resistor R35 is installed vertically with the top lead extending about $1 / 4$ inch (6.5 mm). to form a test point. Connections to the outside world are made by soldering number-22 $(0.6 \mathrm{~mm})$ leads to pads on the board. The output circuit is designed for an 8 -ohm speaker. However,
other speakers may be used with some effect on frequency response and audio level.

alignment

With a $455-\mathrm{kHz}$ signal generator connected through a dc blocking capacitor to the base of transistor 05 and a vtvm connected to the top of the volume control (point E8), adjust transformer T1 for zero volt dc. Noise will be heard with no signal input, and the squelch should operate as expected. About 2 to $10 \mu \mathrm{~V}$ at 455 kHz should provide 20 dB quieting. Now set the signal generator to 10.7 MHz and couple it to the input, J 1 . Alternately peak L1 through L4 for maximum negative voltage at TP1 (top of R35). Image response at 9.79 MHz should be down about 40 dB , and the sensitivity at 10.7 MHz should be 2 to $10 \mu \mathrm{~V}$.

If you wish to use meters to indicate signal strength or carrier frequency, this may be done. A zero-center $50 \mu \mathrm{~A}$ meter may be connected in series with the top of the 10 k volume control (connect a small electrolytic capacitor across the meter). The dc current through the volume control will operate the meter, with positive swings indicating highfrequency error and vice versa. A sensitive voltmeter circuit can be built around a Darlington pair or an op amp to drive an S-meter from the limiter test

fig. 3. Coil winding and lead identification.

Vhf converter board for the fm receiver. Although designed for use with the 10.7 MHz i-f/audio board, it can be used with other i-f systems as discussed in the text.
point at R35. Do not load the base of Q7 by changing the value of R35 or by making connections directly to the base of the transistor. The voltage swings from +0.6 volt to about -3 volts, so some bias is required in the meter amplifier to avoid swinging through zero on the meter.

Since some operators may prefer different frequency response or volume control range, the following information is provided as a guide. The value of R32 may be reduced as low as 47 or 51 ohms to increase audio gain. A corresponding increase in the high frequency response also results. The value of C27 may be changed to vary the audio frequency response. A 0.1 or $0.05 \mu \mathrm{~F}$ capacitor here will provide bass response or more de-emphasis; a $0.001 \mu \mathrm{~F}$ capacitor at C27 will increase high-frequency response.

vhf converter

The vhf converter consists of a sensitive cascode rf amplifier, low-noise fet mixer, an oscillator, and an injection multiplier/buffer chain. Two schematic

fig. 4. Schematic of vhf converter designed for use on two meters (values shown are for 145 to 155 MHz) and 220 MHz . Inductors and transformers are wound with no. 26 (0.4 mm) wire. Tunedcircuit values may be changed as required for operation in adjacent commercial bands.

	145 MHz	220 MHz
C1	10 pF	3.9 pF
C 2	1.0 pF	0.68 pF
C3	15 pF	5 pF
C5	1000 pF	82 pF
C7	150 pF	82 pF
C8	5 pF	3.9 pF
C9	1.0 pF	0.68 pF
C10	15 pF	5 pF
C13	270 pF	82 pF
C19	150 pF	600 pF
C21	15 pF	20 pF
C23	270 pF	150 pF
C24	150 pF	270 pF
C28	10 pF	20 pF
L1	2-1/6 turns	2-1/6 turns
L4	4-5/6 turns	3-1/6 turns
L5	2-1/6 turns	2-1/6 turns
L 8	14-1/3 turns	14-1/3 turns
L10	2-5/6 turns	3-5/6 turns
L12	4-1/6 turns	2-1/6 turns
L13	2-1/6 turns	2-1/6 turns
T1	Primary, 1-1/6 turns; secondary, 3-1/6 turns	Primary, 1-1/6 turns; secondary, 3-1/6 turns
T2	Primary, 14-1/6 turns; secondary, 2-5/6 turns	Primary, 14.1/6 turns; secondary, 2-5/6 turns

diagrams (fig. 4 and 5) give details for various bands, including tuned circuit variations, bypass values, and localoscillator chain.

The i-f output normally is 10.7 MHz for use with the i-f/audio board. However, the output transformer can be modified to cover other intermediate frequencies, such as 14,28 , or 50 MHz , if you wish to use the converter with a tunable receiver as an i-f.

The converter board includes one oscillator. Multichannel operation may be accomplished by using a multichannel adapter ${ }^{2}$ in place of the built-in oscillator. The converter may be used for scanner operation by switching oscillator frequencies in the multichannel adapter.

The crystal in the converter is a third overtone, 0.002% unit cut for series resonance less 1000 Hz (many twometer transceiver crystals may be used).

The required crystal frequency is given by

```
channel frequency - i-f X
```

where X is the frequency multiplier. For channel frequencies of 30 to $60 \mathrm{MHz}, X$
be trimmed to the desired operating frequency.

construction

Most pertinent construction details are shown on the component location

fig. 5. Vhf converter for use on the six- and ten-meter amateur bands. All inductors and transformers wound with no. 26 (0.4 mm) wire.
$=1 ; 90$ to $130 \mathrm{MHz}, \mathrm{X}=2 ; 130$ to 180 $\mathrm{MHz}, \mathrm{X}=3$; and 180 to $230 \mathrm{MHz} ; \mathrm{X}=$ 4. The crystal should be cut about 1000 Hz less than the calculated frequency. This fudge factor allows the crystal to
diagram, fig. 6. Coil forms are the same as used in the i-f/audio board, except that carbonyl J slugs are used in the coil forms. Winding information for the i-f coil is for 10.7 MHz . For an $\mathrm{i}-\mathrm{f}$ near 14

MHz , the primary winding should be reduced to about 10-1/6 turns. For 28 MHz , the primary should be $7-1 / 6$ turns, and the secondary should be 1-5/6 turns. For 50 MHz , capacitor C11 should be changed to 15 pF , and the turns should be as shown on the schematic.

As a matter of interest, the unconventional long leads on a few of the components and the +13 volt connection to the center of the board permit maximum ground area in the board layout. In effect, you get the ground plane performance of a double-sided circuit board without the problems encountered in working with two foils.

When building the converter be sure to observe polarity on the electrolytic capacitor, and be sure to solder the shield can lugs to the board. If coil pruning becomes necessary, the shield cans may be unsoldered. All components should be seated close to the board to provide short leads. If a multichannel adapter is to be used, the oscillator on the converter board can be included for test purposes and later disabled when the adapter is connected.

Phono connectors are used to allow easy connection to the board with coaxial cable. This may be done at a tuned circuit because the coax is terminated at such a point. However, any connectors used in mid-line should be constant-impedance types for low loss, and phono and type-uhf connectors may put a bump in the line in such applications. Likewise, the cable should be chosen carefully for low signal levels. RG-8/U cable (or better) should be used unless you can accept the higher loss of the smaller cable types. If a separate transmitter is used with the converter, a good coax relay should be used to minimize signal loss and to prevent coupling of large amounts of .rf into the front end of the converter.

converter alignment

The most difficult part of the align-
ment procedure is obtaining a stable test signal. Even my HP-608 signal generator takes several hours to settle down enough to stay within a 5 kHz passband at vhf. An alternative is a crystalcontrolled weak-signal source such as

fig. 6. Component layout for the vhf converters. Same circuit board is used for each of the converters shown in figs. 4,5 and 6 . Circuit board is $21 / 2^{\prime \prime}(6.5 \mathrm{~cm})$ wide and $41 / 2^{\prime \prime}$ (11.5 cm) long.
those which have been described in the past. An on-the-air test, if it can be arranged, is another possibility.

Start with all adjustments at about half range. Tune in a signal, and peak all adjustments. If the coils do not peak within the range of the slug, an adjust-

BASIC ONE-CHANNEL VHF FM RECEIVER

(D ALTERNATE UHF RECEIVER WITH VHF PREAMP FOR EXTRA GAIN

(E) ECONOMY MONITOR RECEIVER FOR UHF FM

F AODITION OF ADAPTER FOR MULTI-CHANNEL RECEPTION

fig. 7. Some ideas for complete vhf receiver systems using the vhf converter and i-f/audio board described in this article. Kits for each of the circuits shown here are available from Hamtronics.*
ment in the number of primary turns may be necessary. Be careful, however, that you don't tune a multiplier coil to the wrong harmonic. Then, adjust the oscillator trimmer coil (L8) to net the converter to the channel frequency by monitoring the receiver discriminator or S-meter. Note that the crystal may be pulled enough for adjustment over a range of about 4 kHz at vhf. A vtvm connected to test point TP1 may be used for peaking adjustments when aligning a converter which will be used with the previously described i-f/audio board.

The final alignment should be done by peaking all rf, i-f and multiplier or injection coils with a weak received signal. Antenna reactance may require that the input coil be repeaked when the antenna is connected. Because of interactions between pairs of coils, such coils should be peaked alternately until you find the combination which provides the test sensitivity. This is especially true of L12 and L13, which are somewhat overcoupled. There should not be any tendency to oscillate when the coils are peaked.

When used with the i-f/audio board, the converter should provide sensitivity
*The following kits are being made available in conjunction with this article. Be sure to specify exactly what you want, including frequency band.

I-f/Audio Board kit	R40	$\$ 40.00$
Vhf Converter kit	C25	25.00
Receiver kit (both of above)	R60	64.95
Vhf Preamplifier kit	P6	6.00
Six-Channel Adapter kit	A13-45	12.95
Scanner Adapter kit	AS-10	10.00
Uhf Converter kit	U20-450	20.00
Uhf Preamplifier kit	P15-450	15.00

When ordering please add shipping; New York residents please add sales tax. Quantity prices are available to clubs and to individuals who are interested in distribution at hamfests, etc. A complete catalog is available in exchange for a self-addressed, stamped envelope. Hamtronics, Inc., 182 Belmont Road, Rochester, New York 14612.
of about 0.2 to $0.4 \mu \mathrm{~V}$ for 20 dB quieting. Meter action at TP1 on the $i-f /$ audio board should start with as little as 20 $\mu \vee$ of signal into the converter.

If a multichannel oscillator is used in place of the converter's local oscillator, R5 and Q4 should be removed from the converter. The following parts also may be removed if desired: R1, R2, R3, R4, C14, C15, C16, Y1, L8 and shield.

receiver system ideas

After building the basic receiver you may wish to add accessories to extend its usefulness. Fig. 7 illustrates a variety of receiver configurations using the two boards described in this article as well as circuit boards featured in earlier articles.

The arrangement in fig. 7A is the basic setup described in this article. The layout in fig. 7B uses the uhf converter described in a previous article ${ }^{2}$ for coverage of the $450-\mathrm{MHz}$ amateur band. For weak signal uhf reception or longdistance communications, a uhf preamplifier may be included as shown in fig. 7C. An alternate layout that provices good uhf performance is shown in fig. 7D. ${ }^{3,4}$ For uhf monitor service, the simple circuit of fig. $7 E$ is recommended.

Fig. 7F shows how a multi-channel adapter may be added to the circuit for multi-channel operation. A multichannel fm receiver with a scanner adapter ${ }^{5}$ is shown in fig. 7 H .

references

1. Gerald Vogt, WA2GCF, "VHF FM Receiver," ham radio, November, 1972, page 6. 2. Gerald Vogt, WA2GCF, "Uhf Converter and Preamplifier," ham radio, July, 1975, page 40.
2. Gerald Vogt, WA2GCF, "Improved 6Meter Preamplifier," ham radio, January, 1973, page 46.
3. Gerald Vogt, WA2GCF, "Improved 2Meter Preamplifier," ham radio, March, 1972, page 25.
4. Gerald Vogt, WA2GCF, "Channel Scanner for VHF FM," ham radio, November, 1974, page 26.
ham radio

using TTL ICs in single-sideband equipment

Simple TTL IC

ssb circuits include
a complete transceiver
using only three SN7400 NAND gates

A while ago I was toying with TTL crystal oscillators for use as clocks in digital equipment. The performance of standard multivibrator configurations (see fig. 1) was quite surprising. Just about every crystal I had performed equally well in the circuit. Fundamentals from 100 kHz to over 20 MHz all gave outputs of at least 2 volts peak-to-peak. Perhaps, I thought, these cir-
cuits could be used successfully as local oscillators in high-frequency ssb equipment.

Since the output of the circuit of fig. 1 is a square wave, lower second harmonic content can be expected as compared to most conventional oscillators. ${ }^{1}$ This can be a very good thing when trying to filter out the spurious responses so often troublesome in homebrew ssb gear.

mixer

Having found a cheap, sure-fire local oscillator, A TTL-compatible mixer was required to provide the appropriate double-sideband signal. For this purpose nothing more complicated than a single NAND gate was found to be necessary. Two square waves, $f 1$ and $f 2$, when applied to the separate inputs of a NAND gate, yield outputs of $f 1+f 2$ and $f 1-f 2$. Hence the gate is performing the function of a product modulator. If, however, one input to the gate is biased at the point (A) on the transfer characteristic shown in fig. 2, then a small signal applied to that input will be amplified linearly (see reference 2), and
also switched by the square-wave signal at the other input. Thus, if the switching signal is an rf carrier and the other a speech waveform, then the gate becomes a low level amplitude modulator. A carbon or crystal microphone used as the audio source will usually provide enough output to give a 100 per cent modulated signal.

Reference 2 states that a TTL gate can give large amounts of gain at frequencies as high as 10 MHz when operating as a linear amplifier. Thus it was decided to see if the device could be used as a simple and inexpensive rf

fig. 1. TTL oscillator for fundamental crystals operating in the range from 100 kHz to 20 MHz .
amplifier for small signals. The circuit of fig. 4 was lashed up, and, to my surprise, it performed very well indeed when correctly biased. A gain of around 15 dB was obtained at 8 MHz and there seemed to be no major instability problems. However, it is recommended that double-sided PC board be used with one side acting as a ground plane. Also 0.1 $\mu \mathrm{F}$ and $100 \mu \mathrm{~F}$ capacitors should be wired across the supply pins of each IC to provide adequate decoupling of the +5 volt bus.

ssb exciter using TTL gates

In the junkbox at home 1 found a large number of 10XJ crystals of surplus origin with fundamentals of 3.446 and 3.449 MHz . Not being able to think of anything else to do with them, I attempted to make up something of an ssb filter for use in an exciter built around circuits similar to those outlined

fig. 2. Transfer characteristics of the TTL NAND gate.
above. The unit was designed to generate and detect upper-sideband signals at 3.447 MHz . Fig. 5 shows the circuit of the complete prime-mover.

The oscillator section is straight forward enough and uses a 3.446 MHz crystal for upper sideband and 3.449 MHz for CW. Gates U1C and U1D are buffers for transmit and receive, respectively. These are followed by controlled gates U3B and U2A which route the carrier to the appropriate mixer while shutting the unused one off. PTT (or full break-in CW) is provided by U3A and U2B.

Gates U2C and U3C are the modulator and detector, each giving an output of 2 volts p-p for inputs of 100 mV or so. Following the modulator is a filter/amplifier arrangement comprised of crystals $\mathrm{X} 2, \mathrm{X} 3, \mathrm{X} 4$ and U2D which is used to supply a certain amount of rf clipping before the main filter. U3D, the remaining gate, is used as an rf amplifier preceding the product detector U3C.

fig. 3. Using the $5 N 7400$ gate as a product modulator (mixer).

fig. 4. Simple rf amplifier using a TTL NAND gate. Rf output is about 2 volts p-p for 100 mV p-p input.

Both U3D and U2D are controlled by the PTT voltage applied to their unused inputs.

the filter

The pièce de résistance of most ssb rigs is their filter. Well, this one has quite a job to do since it must remove all the carrier from an a-m signal (the modulator is unbalanced) and also have a reasonable passband characteristic for good audio reproduction. The simple
ladder arrangement shown in fig. 6 seemed to work pretty well, but with an insertion loss of around 10 to 12 dB .

All the series elements of the filter use 3.449 MHz crystals with additional capacitance shunted across them to give series resonant frequencies spread throughout the range from 3.4465 to 3.4485 MHz . The remaining shunt crystals are all resonant at 3.4460 MHz , the carrier frequency, and effectively shunt it to ground.

In the original a total of twelve 10XJ crystals were used, giving about 45 dB of carrier and 35 dB of lower-sideband suppression. There is plenty of room for improvements in the filter design, however!

summary

In conclusion, we have here the basis of a very inexpensive unit which can generate and detect ssb signals at good quality with a minimum of external components. Transmit output power is

fig. 5. Schematic diagram of a complete ssb transceiver using $\mathbf{7 4 0 0}$ series ICs. Circuit for ssb filter, FLI, is shown in fig. 6.
on the order of 10 mW PEP and receiver sensitivity is about 50 mV for noise-free audio (i.e., an S 9 input signal). It is intended that the rest of the receiver gain be supplied by the preselector stages in the frequency translator.
is a good idea to use an oscilloscope for setting the bias points as there is a considerable variation in gate characteristics between samples. This is why potentiometers are shown in all the previous circuits instead of fixed resistors.

fig. 6. Simple ladder filter for 3.447 MHz upper sideband using surplus $10 \times \mathrm{J}$ crystals.

As far as I can see, the standard TTL gate is probably the most useful active device available to the home constructer on a cost/performance basis. It seems that it can be used in almost any application up to 20 MHz or so with a minimum of external components and little difficulty in setting up. Nevertheless, it

references

1. Max Robinson, K4ODS, and John Smith, "Local Oscillator Waveform Effects on Spurious Mixer Responses," ham radio, June, 1974, page 44.
2. Texas Instruments System 74 Designer's Manual, Texas Instruments, Inc., Dallas, Texas, page 20, note iii.
ham radio

Kenwood TS-520 CW filter option modification

Owners of the Kenwood TS-520 transceiver who have the CW filter installed are confronted with the problem that all CW reception must be with the narrow filter when transmitting in this mode. Often it's desirable and more pleasant to receive CW with a wider bandpass as on the upper and lower sideband modes. A very simple modification consisting of the installation of an auxiliary switch permits the option of the wideband or CW narrowband filter. Fortunately the TS- 520 mode control employs diode switching when inserting the CW filter. Thus lead length and capacitance are no problem, and the CW filter control leads can be extended and switched remotely or externally.

The TS-520 has a flat plate on the chassis underside, which is part of the dial assembly and which is an ideal location for such a switch. Adequate clearance is available to install a miniature spdt switch by carefully drilling a hole in this plate for mounting the switch and a clearance hole in the bottom of the outer cover case to permit the switch handle to protrude without being obvious or defacing any panel space. A small three-wire cable connects the switch to the filter control circuit by attaching the center pole of the switch to the original brown common wire and connnecting one switch pole to the CW terminal on the TS-520 i-f circuit board and the other switch pole to the ssb terminal. Thus you now have the option of a wideband CW position (ssb filter) or the $500-\mathrm{Hz}$ CW filter by the simple flick of this switch.

Bill Vandermay, W7ZZ

RTTY

line-end indicator

Solid-state RTTY line-end indicator uses CMOS logic ICs for high reliability and low current drain

Can you type a smooth 60 words per minute? Would you like to have your RTTY transmissions sound like commercial press sent from a tape? It really is quite easy to do provided you are equipped with a tape perforator and transmitter-distributor.

Unfortunately, many amateurs have the equipment but don't like to punch tape while receiving the other fellow's message. This is especially true when there is only one keyboard and printer in the station. You often hear, "How can I

punch tape without seeing what I'm typing; how will I know when I am near the end of the line?" Or, "I have two machines, but if I run them both at once my wife would throw me out of the house!" Relax! It can all be done with one machine with the printer copying the incoming traffic while the keyboard types the answers. Typing blind is really not difficult, and an occasional error will not really matter during a ragchew. It's the end of line that is annoying.

Articles have been written about RTTY line-end indicators, ${ }^{1}$ but they have all been based on mechanical switches, or counting word spaces instead of letters, or other similar circuits. With today's digital and linear ICs it can all be done electronically with the lineend light or bell actuated at 66 characters every time.

The circuit shown in fig. 1, which uses RCA CMOS digital ICs and a bipolar timer, does this. The CMOS ICs have many advantages over the more familiar TTL logic family. Power consumption is minimal. The whole circuit draws 5 mA quiescent or operating,
except when the light goes on. The power supply voltage can be anything from 4.5 to 15 volts and does not really have to be regulated.* Further, the circuit needs only a few common resistors and capacitors.

circuit operation

In the circuit of fig. 1 an optical isolator, U1, in the 60 mA loop will turn its transistor output on and off in response to the mark-space code. The output is separated completely from the input and allows the 120 -volt loop supply to be applied without any danger to the CMOS circuits. The zener diode
across the input protects the optical isolator against incorrect polarity or too high a source voltage.

The isolator collector is tied to the input of U2, an RCA CD4047 monostable oscillator. The appearance of a start pulse will trigger the oscillator whose holding time is set by R1 and C1 to 150 milliseconds, the time it takes for the start pulse, 5 code pulses, and part of the stop pulse to occur. The isolator output is also fed to U5, an RCA CD4015 shift register. This function will be explained later. Each time a character fires U2, its output will trigger U3, an RCA CD4017 divide-by- 10 coun-

fig. 1. Schematic diagram of the RTTY line-end indicator. Correct values for C1, C2, R1, R2, and R3 are shown for speeds of 60 and 100 wpm . Power supply option for 6.3 Vac input is shown at lower right. Circled numbers refer to PC connector pins shown in fig. 2.

speed	C1	C2	R1	R2	R3
60 wpm	$0.1 \mu \mathrm{~F}$	$0.033 \mu \mathrm{~F}$	560 k	470 k	56 k
100 wpm	$0.1 \mu \mathrm{~F}$	$0.033 \mu \mathrm{~F}$	330 k	270 k	56 k

[^0]ter which, after 10 pulses, will trigger U4, another RCA CD4017.

The CD4017 has a serial input and output, but it also has ten outputs, one for each digit. Only one of these outputs will be at logic 1, or high, at any time. Each input pulse will move the
logical 1 state from pin to pin until, on the tenth pulse, it will be back where it started.

This rotating logic 1 can be used to form a sort of combination lock when used in conjunction with some simple NOR gates. The output of a NOR gate will go high only when all of the gate inputs are low. Using this information,
to be high. Under these conditions the output from U6C cannot go high to turn the lamp on.

At count 60 the output of section U6B will go low, but from count 60 to 67 , the outputs from U3 units counts 8 and 9 will be low, as will the connection from the U4 7 count. Therefore, the output from U6A will be high and the

fig. 2. Printed-circuit layout for the RTTY line-end indicator. The unused contacts at R1, R2 and C2 are used, as required, for frequency adjustment. The connection from the collector of the transistor Q1 is chosen for relay or lamp option (see fig. 1). Connect the lamp to pins 2 and 6 of the board. For external power supply, omit the external $100 \mu \mathrm{~F}$ capacitor, 120 ohm resistor and 5 volt zener and short pin 1 of the board to pin 2.
let's work back from the lamp which will signal that the end of the RTTY line is near.

The lamp will be on when Q 1 conducts; that is, its base is greater than 0.7 volt. The base voltage is supplied by the output of U6C, a NOR gate. For this gate to have a high output, its inputs from sections U6A and U6B must be low. For a count below 60 the leads from 6 and 7 of the tens counter will both be low, causing the output of U6B
output from U6C will stay low - the lamp stays off.

However, at count 68, the units 8 will go high, driving the output of U6A low. Since the U6B output is also low, output from U6C will go high and the lamp will turn on. This same condition will exist at count 69. At count 70 both U6A and U6B will have a high input (from the 7 count on U4) and the lamp will stay on until count 80 , which is way past the line end of 72 characters.

Now that the lamp has gone on, a few more letters may be typed and then carriage return-line feed-letters. The carriage return code group is used to reset
gate only when the carriage return character (SSSMS) is struck. The RCA CD4015 is a serial input, parallel output, static shift register. Each time a

fig. 3. Full-sized printed-circuit board for the RTTY line-end indicator. Component layout is shown in fig. 2.
the counters to zero for the next line. Here's how it works: A shift register, U5, used to read the five-unit Baudot code, is preset to trigger another NOR
pulse appears at its clock input, the information already in the register is shifted over one stage. The parallel output allows data monitoring at each stage.

The clock pulses are provided by an RCA CA555 astable timer, U9, set for approximately the same pulse width as the 22 millisecond Baudot code. The start pulse at the output of the optical isolator will turn on the monostable oscillator, U2, and will also appear at the data input of the shift register, U5. The oscillator output, in turn, will trigger the astable timer, U9, but will allow it to stay on only for seven pulses. These seven pulses will clock the register for each of the seven mark, or space, pulses of a Baudot character. After seven pulses the register will contain the code for the character sent.

Ignoring the start and stop pulses, the five-character code pulses available at the parallel outputs can now be checked to see if they form the code group for carriage return (SSSMS). By placing inverters in each of the space outputs, all outputs applied to U8 (RCA CD4078) become low. This condition will occur only for carriage return (for any other character, one or more of the outputs will be high). With all inputs low, the output of U8 will go high and reset U3 and U4. While the seven pulses are being fed into the shift register, the output of UB is kept low by the input lines (pins 9, 10, 11) which are tied to the high output of U2.

If you were concerned about the lamp going on too close to the line-end after character 68 was struck, relax. All amateurs send the carriage return-line feed-letters combination at the end of line. The last two functions do not move the type box, so the lamp will go on at 66 printed characters, the same as the mechanical switch on the printer. Use of the figures or letters key on any line of type provides a safety factor. They will be counted even though there is no print.

Construction is simple whether you use hand wiring or a printed-circuit board. The layout of the circuit board is shown in fig. 2. The board can be
mounted inside the machine. The printer remains in the TU loop while the keyboard and line-end indicator input are put in series in a separate loop to the perforator (watch the polarity).

If the board is too big, as shown, you can build a smaller one as there really is nothing critical. The only adjustments are to the two oscillators. The values shown in fig. 1 should work with no problem. For exact adjustment use a digital counter and vary R1 and/or R2 for the monostable oscillator, U2, and astable oscillator, U9, respectively. Set the monostable for 150 milliseconds (7 Hz) and the astable for 22 milliseconds (45 Hz). If in doubt, set the astable slightly on the low frequency side. The rise time of its pulses can occur anytime during each 22 millisecond Baudot pulse.

A relay to turn on an existing margin light may be substituted for the lamp shown in fig. 1. The PC board provides contacts for a relay such as the General Reed GR410-P5 or Clare MRB 1 A05. Just wire the relay contacts in parallel with the machine margin switch.

The circuit board also provides for a rectifier diode to allow use of 6.3 volt ac power. A dropping resistor and 5.1 volt zener diode are added to prevent wide voltage swings as the lamp turns on and off.

conclusion

And what do you have after you built this CMOS line-end indicator? You can receive a message and while reading what is being printed, you can type answers to questions, ask questions, or make comments. When the other station signs, you can turn on the transmitter and TD and continue to punch tape while you are transmitting commercial quality, 60 wpm copy.

reference

1. H. Dressel, W2UVF, "RTTY Line Length Indicator,' ham radio, November, 1973, page 62.
ham radio

NEW Bex Refiler

- Synthesized •General Coverage • Low Cost - All Solid State - Built-in AC Power Supply - Selectable Sidebands • Excellent Performance

PRELIMINARY SPECIFICATIONS: • Coverage: 500 kHz to 30 MHz - Frequency can be read accurately to better than 5 kHz - Sensitivity typically .5 microvolts for $10 \mathrm{~dB} \mathrm{~S}+\mathrm{N} / \mathrm{N}$ SSB and better than 2 microvolts for $10 \mathrm{~dB} \mathrm{~S}+$ N/N AM • Selectable sidebands • Built-in power supply: $117 / 234$ VAC $\pm 20 \%$ - If the AC power source fails the unit switches automatically to an internal battery pack which uses eight D-cells (not supplied). - For reduced current drain on DC operation the dials do not light up unless a red pushbutton on the front panel is depressed.

The performance, versatility, size and low cost of the SSR-1 make it ideal for use as a stand-by amateur or novice-amateur receiver, short wave receiver, CB monitor receiver, or general purpose laboratory receiver.

For more information on this and other Drake products, please contact:

R. L. DRAKE COMPANY

540 Richard Street, Miamisburg, Ohio 45342 • Phone (513) 866-2421 • Telex 288-017
See us at SAROC in Las Vegas

tunable audio filter

for weak-signal communications

A discussion of weak-signal CW detection techniques, including a versatile, high-performance audio filter

Although there has recently been a great deal of controversy over the value of CW communications, CW continues to be the most efficient mode of radio transmission. This was true in the first successful transatlantic tests of the 1920s and it is still true today as amateurs work to improve the reliability of EME, meteor scatter and long-range tropospheric communications. Once a communications path has been proven to exist with CW, amateurs usually find a way to use ssb (or other mode) over the same path. CW is also valuable for working $D X$ on the high-frequency bands when propagation conditions are poor, particularly during periods of low solar activity.

Amateur communications equipment has come a long way since 1921 when Paul Godley set up a receiving station
on the Scottish coast to listen for signals from the United States. Now our transmitters run higher power, are more efficient and are stable; high-gain, directional antennas are commonplace and our stable and sensitive communications receivers are equipped with highly selective mechanical or crystal filters.

The communications receiver conditions the incoming CW signal so that the greatest receiver of all - our ear-brain can capture that first detectable signal. The ear is capable of receiving signals from less than 20 Hz to more than 20 kHz and, when coupled with the brain, forms an extremely efficient and versatile CW detector. Furthermore, the earbrain combination is capable of acting like a variable-frequency, variablebandwidth audio filter which allows us to detect and copy signals which are buried in the noise or nearly obliterated by interference.

The human ear is actually able to

fig. 2. Universal Active Filters manufactured by KTI.
hear signals which are below the noise level. ${ }^{1}$ Tests conducted by W2IMU, using a 3 kHz bandwidth receiver and a signal generator, showed that when a CW signal is adjusted to the same audio level as the noise (zero dB signal-tonoise ratio), the signal was 100 per cent

fig. 1. Critical bandwidth of the human ear as function of frequency.
readable. The input signal was then reduced in 3 dB steps. Copy became more difficult but callsigns could still be accurately identified at 9 to 12 dB below the noise level. Although the presence of signals 20 dB below the noise could still be detected, the signals could not be copied.

The reason that these weak signals can be copied reliably is that the earbrain filter has narrowed its bandwidth to approximately 50 Hz ! The graph of fig. 1 shows the frequency response of the human ear vs its bandwidth. ${ }^{2}$ This curve also shows that 1000 Hz is not the optimum tone with which to copy weak CW signals. Most amateurs who have worked with weak CW signals have found that they prefer a lower pitch as signals get weaker. Fig. 1 shows why.

fig. 3. Comparison of active filter outputs as a function of frequency.

Another reason to lower the frequency of the signal you want to copy is that, if there is interference, the lower-frequency signal is easier to detect. For example, if the frequency dif-
ference between the desired and undesired signals is 100 Hz , and the desired signal is tuned for a 1000 Hz pitch, the frequency difference is only 10 per

fig. 4. Basic schematic of the KTI Universal Active Filter.
cent. If you tune the desired signal for a 500 Hz pitch, the frequency difference is increased to 20 per cent, a $2: 1 \mathrm{im}$ provement.

The human ear-brain also copies signals by comparing signal against signal or signal against noise. If a narrow bandpass filter, say 200 Hz , is used in the receiver it excludes other signals as well as some of the noise. This is fine for strong signals but causes problems with weak ones because too much bandwidth restriction limits the amount of noise the ear has to compare with.

Very sharp filters also have a tendency to "ring" - this ringing sounds much like the signal and makes signal-to-noise comparison difficult, if not impossible, with very weak CW signals. In addition, narrow bandwidth filters are usually tuned to some fixed frequency so the individual operator cannot optimize the frequency and bandwidth of the filter to complement his own ear.

Since the human ear is already capable of 50 Hz bandwidth, very narrow filters are not the best for weak CW detection except for eliminating inter-
ference. What is needed is a variable frequency and variable bandwidth filter that can be adjusted for various operating conditions. Variable audio filters are
sponse to less than 10 Hz . They can also provide simultaneous highpass, bandpass and lowpass outputs as shown in fig. 3 so they are ideal for such applications as

fig. 5. Tunable audio filter uses KTI FX-60 Universal Active Filter and provides highpass, bandpass and lowpass outputs. Circuit has unity voltage gain so it may be switched in and out of the receiving system as required without adjusting the audio gain control. Printed-circuit layout for the filter is shown in fig. 6.
difficult to build with lumped values of inductance and capacitance, but modern integrated-circuit technology provides the basis for excellent audio CW filters. Kinetic Technology* has developed a line of Universal Active Filters which can be used from less than 1 Hz to greater than 100 kHz , depending on the model. The bandwidth of these active filters can be adjusted for a flat re-

[^1]speech filters, notch filters, tone encoders, RTTY and, best of all, CW filters.

tunable cw filter

The KTI active filters use three operational amplifiers in a stable, negativefeedback circuit (fig. 4) which is commonly called a bi-quad. Although a complete description of device operation and its various connections is beyond the scope of this article, complete data is available from KTI.

A tunable CW filter which uses the KTI FX-60 and an LM380 audio ampli-
fier is shown in fig. 5. This filter tunes the audio range from 300 to 1800 Hz and its bandwidth can be adjusted from 50 to 1200 Hz . The filter, which has unity gain and is built on a printedcircuit board, is designed to be plugged into the headphone jack of a communi-
(C1, R14, C2) passes the audio frequencies but blocks rf energy. Resistor R13 is used to lower the input signal level, if required, to the FX-60 active filter. The dual 50k potentiometer, R3A and R3B, sets the frequency of the filter while the bandwidth is adjusted with

cations receiver. The output is then connected to the speaker or headphones and the filter can be switched into the circuit as required. The LM38ON provides two watts of audio output, more than enough for most applications.

In the circuit of fig. 5 the audio signal from the receiver is introduced to the CW filter at J1. The input pi network
potentiometer R9. The function switch, S1, selects the highpass, bandpass or lowpass output from the FX-60 or switches the filter out of the circuit.

In the active filter circuit resistors R1 and R12 provide the necessary biasing so the FX-60 can be operated from a single, positive power supply, Resistor R11 allows the three outputs to be at

Tunable audio filter built by WIDTY is housed in Ten-Tec JW-5 enclosure.
Input and output jacks are on rear panel.

Construction of the tunable audio filter built by WIDTY using printed-circuit board available from Holladay Communications. Input and output jacks are on rear panel, left. Board is installed on chassis with $0.25^{\prime \prime}$ (7 mm) spacers.

the same level. R10 limits the widest bandwidth while R9 sets the narrowest limit.

During setup resistor R8A is adjusted until the circuit goes into oscillation; the correct value is that just before the circuit oscillates. The narrowest bandwidth will vary from unit to unit, and some may not require R8A. Resistor R16 maintains filter stability at the narrow bandwidth setting and capacitors C4 and C5 set the frequency range.

The National LM38ON audio power IC is connected to the function switch through the dc blocking capacitor, C6. Resistors R5 and R6 set the input level and capacitor C7 provides highfrequency rolloff at 4 kHz . The series RC circuit (R7, C9) from the output pin to ground prevents high-frequency oscillations.

The tunable audio filter is built on a 3 by 4.4 inch (7.6 by 11.2 cm) printedcircuit board. The component layout is shown in fig. 6. Printed-circuit boards
and special components are being made available in conjunction with this article.*

The tunable audio filter may be used to improve various types of receiver signals. In the lowpass mode it can be helpful with ssb reception. For use on CW it should be set to the bandpass position,
is quite simple and there is no preset adjustment to follow. Some amateurs like to use the unit in the narrow bandwidth, lowpass mode (fig. 8) as this provides some low-frequency noise to which the ear can compare weak CW signals.

fig. 7. Full-size printed-circuit layout for the tunable audio filter. Drilled PC boards are available (see foot note below).
adjusted to narrow bandwidth and peaked on the desired CW signal. The optimum frequency and bandwidth will vary from operator to operator, as discussed previously. Operation of the unit

fig. 8. Frequency response of the tunable audio filter set for narrow bandwidth in the lowpass position. This response is sometimes preferred for weak-signal CW work.
*The following components can be supplied: drilled and plated printed-circuit board, \$5.75; KIT FX-60 Universal Active Filter, \$6.95: National LM38ON audio power IC, $\$ 1.75$: Allen-Bradley dual 50 k potentiometer, CCW log taper, \$7.30; power transformer, Signal PC 24-180, \$4.80. Wired and tested filters, model AF-100, complete with enclosure are also available for $\$ 60.00$. Order from Holladay Communications, 2140 Jeanie Lane, Gilroy, California 95020.

references

1. R. Turrin, W2IMU, "Simple Super Selectivity." OST, January, 1967, page 48.
2. P. Laakmann, WB6ION, "Signal Detection and Communication in the Presence of White Noise," ham radio, February, 1969, page 16.
ham radio

OX OSCILLATOR
Crystal controlled transistor type. 3 to $20 \mathrm{MHz}, \mathrm{OX}-\mathrm{Lo}$, Cat. No. 035100.20 to 60 MHz , OX-Hi, Cat. No. 035101
Specify when ordering.
Price $\$ 3.95$ ea.

OF-1 OSCILLATOR

Crystal controlled trans. istor type. 3 to $20 \mathrm{MHz}, \mathrm{OF}-1$, Lo, Cat. No. 035108. 20 to 60 MHz, OF-1, Hi, Cat. No. 035109 Specify when ordering.

Price $\$ 3.25$ ea.

EX CRYSTALS Cat. No. 031080

 (HC 6/U HOLDER)

031081

031300

031310

MXX-1

TRANSISTOR

RF MIXER

A single tuned circuit intended for signal conversion in the 30 to 170 MHz range. Harmonics of the OX or OF-1 oscillator are used for injection in the 60 to 179 MHz range. 3 to 20 MHz , Lo Kit, Cat. No. 035105. 20 to 170 MHz , Hi Kit, Cat. No. 035106
Specify when ordering.
Price. $\$ 4.50$ ea.

SAX-1

TRANSISTOR
 RF AMP

A small signal amplifier to drive the MXX-1 Mixer, Signal tuned input and link output. 3 to 20 MHz , Lo Kit, Cat. No. 035102. 20 to 170 MHz , Hi Kit. Cat. No. 035103
Specify when ordering.
Price $\$ 4.50$ ea.

PAX-1

TRANSISTOR

RF POWER AMP

A single tuned output amplifier designed to follow the OX or OF-1 oscillator. Outputs up to 200 mw , depending on frequency and voltage. Amplifier can be amplitude modulated. 3 to 30 MHz , Cat. No. 035104 Specify when ordering

Price $\$ 4.75$ ea.

BAX-1

BROADBAND AMP

General purpose amplifier which may be used as a tuned or untuned unit in RF and audio applications. 20 Hz to 150 MHz with 6 to 30 db gain. Cat. No. 035107
Specify when ordering
Price $\$ 4.75$ ea.

Shipping and postage (inside U.S.. Canada and Mexico only) will be prepaid by International. Prices quoted for U.S., Canada and Mexico orders only. Orders for shipment to other countries will be quoted on request. Address orders to. M/S Dept., P.O. Box 32497, Oklahoma City, Oklahoma 73132.

International Crystal Mfg. Co., Inc.
10 North Lee
Oklahoma City, Oklahoma 73102

frequency selective and sensitivity controlled sstv preamplifier

Discussion of a

specially designed op-amp circuit for reception of sstv pictures under adverse operating conditions

Generally the input circuit of a sstv receiver uses a limiting amplifier so the frequency-modulated sstv signal is independent of amplitude variations. If this amplifier is not frequency selective and not sensitivity controlled, all signals within the range of the sstv signal frequency with amplitudes high enough to be limited will pass through the circuit and influence the picture.

Some sstv receivers use a filter in the input stage, but its efficiency depends on the signal strength, and undesired weaker signals, including unwanted sstv signals at the same frequency, will not be suppressed. A frequency-selective and sensitivity-controlled limiting amplifier avoids these disadvantages. It can be used as a preamplifier with any sstv receiver and permits the reception of sstv
pictures under extremely adverse conditions.

In the block diagram of the system shown in fig. 1, the linearly amplified input signal passes through a high-pass filter and appears as a square-wave signal at the output of the comparator only if its amplitude exceeds that of the reference voltage, which is proportional to the peak voltage of the $1200-\mathrm{Hz}$ synchronizing signal.

With this circuit the cutoff frequency of the high-pass filter is independent of the input amplitude. Furthermore, the sensitivity of the comparator is adapted to the amplitude of the sstv signal. Weaker signals, including sstv signals which are weaker than the desired signal, are totally suppressed.

Fig. 2 shows the circuit in detail. The back-to-back diodes (CR1 and CR2) at the input protect the linear amplifier, U1, from excessive drive. The high-pass filter (U2 and U3) is an active Tschebyscheff filter of the order $n=4$ with a cutoff frequency of about 1000 Hz ($-60 \mathrm{~dB} /$ decade).

The frequency of the selective amplifier, U4, can be tuned to 1200 Hz by means of potentiometer R1. The peak voltage detector (U5 and U6) has a charging time constant of about 1 millisecond; the discharging time constant was chosen to be about 1 second.

The comparator, U7, is clamped by two back-to-back diodes to limit the output amplitude to 0.7 volt. In most cases this amplitude is still too high and

[^2]must be further reduced, typically to 100 millivolts or so. The output can be adjusted to the required level with potentiometer R4.*

To adjust the system first short the input of U1 and set the output of U6 to
zero voltage with potentiometer R2. Feed an sstv signal into the input and adjust R1 for maximum reference voltage. Now reduce the reference voltage with R3 as much as is required to synchronize the picture. Otherwise the

trolled sstv preamplifier which permits reception of sstv signals under adverse conditions.
table 1. Operating specifications for the fre-quency-selective and sensitivity-controlled sstv preamplifier.

Input sensitivity	1 mV rms
Regulating range	1 mV to 500 mV rms
Frequency range	1000 to 2800 Hz
Power requirements	± 15 volts, 16 mA

reference voltage is too high and the synchronizing frequency cannot pass through the comparator. Complete specifications for this circuit are given in table 1.
ham radio

the crystal mixer:

recipe for curing receiver drift

RTTY operation made me aware of the need for frequency stability in my receiver. When copying nets receiver drift, although small, became a big problem. For example, autostart nets demand receiver stability on the order of several Hz . I tried the usual remedies to improve receiver frequency stability: voltage regulation, ventilation, and reduced heat sources but more stability was needed. Crystal control was the obvious answer.

the rock-mixer

My approach to the problem was simple and inexpensive. The device described here, which I call the rockmixer, uses only a handfull of ICs and very few crystals. In fact, one odd-ball crystal and the rock-mixer will allow you to tune the entire 20 -meter band with crystal control all the way. The rock-mixer is easy to adapt to almost any receiver - no phase-locked loops, no filters, and no other synthesizer-type complications.

The rock-mixer creates two frequencies and combines them to produce a pulse train with which your receiver local oscillator can synchronize. Your job is to determine what combination of frequencies to use, given the modest selection of crystals you might have on hand. You don't even need crystals in
table 1. N values and lock-on frequencies produced when the receiver local-oscillator frequency is above the crystal frequency. $F_{x}=15000 \mathrm{kHz}, F_{i-f}=1650$ kHz .

n	divide-by-n output, F_{X} / n (kHz)	LO frequency $\left[F_{x}+\left(F_{x} / n\right)\right]$ (kHz)	received frequency $\left[F_{x}+\left(F_{x} / n\right)\right]-F_{i-f}$ (kHz)
19	789.474	15789.474	14139.474
20	750.000	15750.000	14100.000
21	714.286	15714.286	14064.286
22	681.818	15681.818	14031.818
23	652.174	15652.174	14002.174

$F_{X}=$ crystal frequency 15000 kHz
$\mathrm{F}_{\mathrm{i}-\mathrm{f}}=$ intermediate frequency $=1650 \mathrm{kHz}$
the amateur bands; surplus crystals work fine and are inexpensive.

Fig. 1 is a version of the rock-mixer which includes a variable frequency crystal oscillator, a divide-by-n circuit (VXO), a mixer NAND to combine the fundamental and divided frequencies, and a coupling capacitor to your receiver local oscillator (LO). The coupling capacitor can be a gimmick (wire twisted around the grid lead to the LO tube).

operation

The VXO provides a stable frequency, which is tunable over a modest range. The output of the divide-by-n is added to or subtracted from the VXO frequency to produce a pulse train from the mixer NAND to which the receiver LO can lock. Example: suppose you wish to tune in a station at 14062 kHz and the crystal you choose is 15000 kHz . To tune 14062 kHz with an i-f of 1650 kHz requires 15712 kHz at the receiver local oscillator, which is a frequency difference of 712 kHz . To get a ballpark value for n, divide 15000 by 712, which equals 21.067. Note, however, that only whole numbers can be used in the divide-by-n circuit, which must provide a pulse train with a frequency that the receiver local oscillator can lock onto to produce the frequency to be received (14062 kHz).

Table 1 shows what can be expected for n between 19 and 23, for example, in the 20 -meter band when the local oscillator frequency is above that of the VXO crystal. Note that the integer 21 yields a received frequency of 14064 kHz . But since we wish to receive 14062 kHz , we must find a frequency to which the $15000-\mathrm{kHz}$ crystal can be VXOed to produce 14062 kHz .

When the local oscillator frequency is above the crystal frequency,

$$
\begin{equation*}
F_{\Delta x}=\frac{\left(F_{d}+F_{i-f}\right) n}{n+1} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
F_{\Delta x}= & \text { crystal frequency changed by } \\
& \text { the } V \times O \\
F_{d}= & \text { desired frequency } \\
& (14062 \mathrm{kHz}) \\
F_{\text {i-f }}= & \text { intermediate frequency } \\
& (1650 \mathrm{kHz}) \\
n= & \text { number to which the divide. } \\
& \text { by-n circuit is set (} 21 \text { in the } \\
& \text { example) }
\end{aligned}
$$

If the local oscillator frequency is below the crystal frequency, simply replace $n+1$ in the denominator of eq. 1 with $n-1$.

Using the example above, in which the local oscillator frequency is above

fig. 1. Rock-mixer block diagram. Circuit features surplus crystals and readily available ics. The value is determined by formula to produce a synchronizing pulse train for the receiver $L O$.
the crystal frequency, then the frequency to which the crystal must be VXOed to receive 14062 kHz is 14997.818 kHz . By VXOing the $15000-\mathrm{kHz}$ crystal to 14997.818 kHz and setting the divide-by-n circuit to 21, a pulse train of 15712 kHz will be

```
table 2, Receiver frequency ranges for
the 20-meter band as a function of n,
using a 15-MHz crystal.
\begin{tabular}{lc}
\(\boldsymbol{n}\) & \begin{tabular}{c} 
frequency tuned by each \(\mathbf{n}\) \\
\(\mathbf{n}\)
\end{tabular} \\
21 & 14001 to 14077 \\
20 & 14037 to 14113 \\
19 & 14076 to 14152 \\
18 & 14120 to 14196 \\
17 & 14169 to 14245 \\
16 & 14224 to 14300 \\
15 & 14286 to 14363 \\
14 & 14357 to 14434
\end{tabular}
```

produced from the mixer NAND to which the receiver local oscillator can lock onto to bring in the station at 14062 kHz.

You'll note that other frequencies will appear in the mixture feeding the local oscillator, but the predominant
kHz . Since n is 21 , the divide-by-n output is 714.182 kHz ; therefore, the sum and difference frequencies are 15712.000 and 14283.637 kHz , respectively.

To attain lock is a simple matter. Tune the dial to a point near the expected place. As you approach it the receiver will lock from as far away as 50 kHz under the right conditions. When a lock has been attained you can tune the receiver knob a modest amount on either side and not lose the desired station. When you exceed the lock-in range you will hear squishing noises as well as other stations, but you won't lose the desired station. If you desire to fine-tune the station, then tweak the VXO knob and the receiver will follow.

When the lock-in condition exists, the receiver tuning will be under complete control of the VXO: thus the VXO knob is now the receive tune knob. The tuning range will be limited to the extent that you can "rubber" the crystal. For a $15-\mathrm{MHz}$ crystal my VXO covers 14940 to 15012 kHz . Table 2
table 3. Selected frequencies for RTTY using the $\mathbf{S X - 1 0 0}$ receiver $\mathbf{(1 6 5 0 - k H z i - f)}$.

frequency (kHz)	station	speed/shift $(\mathbf{w p m} / \mathbf{H z})$	n	crystal frequency $(\mathbf{M H z})$
3600	Autostart net	$60 / 850$	22	5.02
3623	W1AW ARRL Headquarters	$60 / 170-850$	20	5.02
3223	WBR70 Miami WX	$60 / 850$	12	9.00
8105	WBR70 Miami WX	$60 / 850$	12	9.00
8105	WBR70 Miami WX	$60 / 850$	14	9.10
8105	WBR70 Miami WX	$60 / 850$	40	10.00
12175	WBR70 Miami WX	$60 / 850$	13	15.00
12175	WBR70 Miami WX	$60 / 850$	140	13.92
8183	UPI News in English	$66 / 550$	11 or 22	9.01
19537	AP News in English (NYC)	$66 / 400$	6 or 12	9.08
5460	Voice of America (USIS)	$60 / 400$	64	7.00
5460	Voice of America	$60 / 400$	9	8.00
10972	Voice of America	$60 / 400$	12	11.65

frequency is the crystal frequency plus the divide-by-n output (see table 1).

Now let's review what we did. The $15-\mathrm{MHz}$ crystal frequency has been changed by the VXO to 14997.818
shows the corresponding ranges that can be covered on 20 meters with the 15 MHz crystal in the VXO and with the divide-by-n circuit set as shown. (Remember the i-f was 1650 kHz .)

Table 2 shows that the entire 20meter band can be received, crystal controlled, using only one crystal. In my case a $15-\mathrm{MHz}$ rock was used, but note that almost any crystal near 15 MHz will work. For example, a 15239 kHz crystal or another oddball like 14875 kHz would work just as well; the only change would be the n value required.

You don't need to make a fundamental pulse train, because harmonics and subharmonics are almost as good. In the examples with two n values the oscillator is made to lock onto frequencies twice removed from the usual frequencies. Consider a $10-\mathrm{MHz}$ VXO and an n value of 10 . The receiver oscillator can just as easily lock onto 9.0, 10.0,

fig. 2. Circuit for one or two crystals. A pair of 7404 s form the $\vee \times O$ and the second crystal oscillator. A 7440 drives a counter and provides mixing for the divide-by-n circuit.

Table 3 shows several frequencies I use for RTTY. These are real examples, so included in the list are the n values and the nominal crystal frequency to tune in the particular station. Some examples in table 3 are straightforward and some are a little tricky. The one at 3223 kHz is a case in point. The $9-\mathrm{MHz}$ crystal and the divide-by- 12 circuit produce 9746 kHz to which the receiver LO at 4873 kHz can easily lock ($i-f$ is 1650 kHz).
and 11.0 MHz . Now make $n=20$ and lock-on to the same frequencies occurs as well as to many others, such as 9.5 , $10.5,11.5 \mathrm{MHz}$, etc. There are other reasons to use the doubled n value, which are treated later.

two-crystal rock-mixer

There may come a point when you give up trying to find a good combination of n with a crystal you have available. Enter the two-crystal rock-mixer.

In this arrangement you have one crystal in the VXO and a different crystal feeding the divide-by-n circuit; thus, you have greatly expanded the rock-mixer capability.

Fig. 2 shows the rock-mixer circuit in which one or two crystals can be used. Two 7404 hex inverters form the VXO^{1} and the second crystal oscillator. Two

Table 4 shows the application of the 7493 for this purpose.

Fig. 3 depicts the shift registers and the logic to divide by any number from 1 to 100 . This circuit was found in the Fairchild TTL Applications Handbook. ${ }^{2}$ The only changes I made were to substitute some equivalent ICs instead of those in the reference.

fig. 3. Logic for dividing by any number between 1 and 100 . Circuit divides by one more than shown by selector switch (fig. 4), thus dials should be set at 00 to divide by 1 ; 09 to divide by 10 ; 29 to divide by 30 ; etc.
variable capacitors are shown with two crystal sockets. It is important to keep circuit stray capacitance at a minimum when varying the crystal frequency in the high direction. Note that no switch is used for changing crystals, because it's not possible to keep stray capacitance to a low enough value with any type of switch.

The divide-by-n circuit consists of two parts: a set of two 74195 shift registers (fig. 3) and a 4 -bit binary IC (7493) connected to divide by $1,2,4$, 8, 16. The 7493 is a "division range increaser," but more important is its function as a "duty-cycle improver."

Briefly, the operation of the circuit is as follows. At the end of a divide sequence the registers are loaded with the data from the selector switches connected to wires a, b, c, and d. The registers then clock away until all outputs connected to the 7430 NAND are high, thereby producing an output pulse that loads the data, and the process repeats. The data can be selected by two 4 -pole, 10 -position selectors wired according to the switch code. A less expensive alternative using diode logic and two 10 -position selectors of one pole each is shown in fig. 4. The switch code calls for either a 1 or a zero. The
zero means to ground the point, and the 1 means to leave it open. The system counts one more than the data loaded, so if you want to divide by 23 you must set the switches for 22.

The rest of the circuit of fig. 2 is self explanatory. A part of the 7440 NAND is used to drive a counter. The other part of the 7440 is the mixer, whose output connects to a level-adjusting pot, then to the BNC connector, which leads to the receiver local oscillator. The power for the unit is +5 volts at 225 mA maximum when no crystals are in place. At 15 MHz only 170 mA is required. I used an old 6.3-Vac filament transformer, a diode bridge rectifier, a 1000 $\mu \mathrm{F}$ electrolytic, and a three-terminal, 5 -volt regulator. This circuit provides adequate power to the regulator; and at the maximum condition of 225 mA , the supply provides 8.3 volts at the regulator input.

crystal sources

Crystals for the rock-mixer are inexpensive and easy to obtain from a variety of sources. At the Dayton Hamvention, for example, crystals perfect for rock mixing were selling for 15 cents each. The reason the crystals are so inexpensive is because their frequencies are not good for much - except rockmixing, and you're reading the first account of this now.

Many crystal manufacturers list their surplus crystals at bargain prices, so scan the flyers and you can find lots of "funny-frequency" crystals. Two prime sources I use are the citizens band and surplus fm mobile crystals; for example, some crystals marked for 153 MHz turned out to be 6.38 MHz fundamental mode, and others were 11.6 MHz . In a big bag full of surplus crystals purchased at Dayton were lots of usable ones from 5 to 16 MHz .

connections

Hooking up the rock-mixer to the receiver LO is another of those dealer's
choice affairs, because very few amateurs have the same receiver setup. The simplest method, requiring neither holes nor solder, is to run the rock-mixer output coax into the receiver and clip the shield to ground and twist a few inches of the center lead around the wire from the tuning capacitor to the local oscillator coil or tube grid. This

fig. 4. Alternative selector switch and diode matrix circuit.
connection or gimmick, injects a weak but significant amount of signal into the oscillator except when the capacitor is nearly meshed.

A better approach is to locate a point in the LO where a ground can be lifted and a 47 -ohm resistor inserted. There are many likely spots, such as plate or collector bypass-to-ground capacitors, or emitter or cathode grounds. In the SX-100, for example, the LO has a grounded cathode, tuned-grid, platetickler circuit, so in my case a 47 -ohm
resistor is now between cathode and ground, and the coax is connected directly to the resistor, terminating in a BNC connector on the front panel. This type of low-impedance injection produces excellent lock-in characteristics over the entire receiver range of 0.5 to $30+\mathrm{MHz}$ as well as no interference with the normal operation of the receiver. Such a connection is also convenient to bring out a small amount of rf from the oscillator to operate a counter.

concluding remarks

The rock-mixer is a simple device for crystal control of almost any receiver. It's easy to set up and use if you have a counter and a calculator. Its ease of operation will depend on the care used in calibrating both the receiver and VXO. Once learned and recorded, the scheme to lock onto a particular band of frequencies, or even a single point, is quite simple and rapid with or without the calculator-counter combination.

Tuning the band under crystal control is simple if you set up a segment schedule similar to the one shown in table 2. However, there's a hitch to this unless you calibrate the VXO to suit the situation, because the receiver dial means almost nothing except to show what band you're on. I solved this problem by building a homebrew counter using decades that can be preset instead of the usual type, which reset only to zero. The counter is switched to read all pertinent frequencies in the rock-mixer and the receiver.

When reading frequency per se, the reset pulse from the logic ties to the normal "reset-to-zero" bus line of all the decades. When connected to the receiver LO, the reset pulse is switched to the strobe data inputs, and the complement of the receiver i-f is thereby loaded into the counter decades. For an i-f of 1650 kHz the complement is 9835.00. Therefore, after 16500 input counts the counters read 0000.00 and
table 4. Receiver lock-in range as a function of division sequence.

received frequency $(\mathbf{k H z})$	vxo frequency $(\mathbf{k H z})$	divisor settings shift registers	7493	receiver lock-in range (kHz)
3223	8996	6	2	29.4
3223	8996	6	4	12.2
3223	8996	12	1	5.3
3223	8996	6	1	3.1
3600	5022	11	2	54.1
3600	5022	22	1	4.9
3600	5022	22	2	4.7
8183	9014	11	1	16.0
8183	9014	11	2	12.8
8183	9014	22	2	8.9
8183	9014	22	1	7.9
12175	14977	13	1	38.8
12175	14977	13	2	19.0
12175	14977	13	4	10.0
14030	14998	1	2	59.4
14030	14998	22	1	9.1
14030	14998	22	2	4.1

One case requiring no division:

8183	9833	1	1	126.0
8183	9833	1	2	88.7
8183	9833	1	4	83.3

the ensuing input counts above this point until the end of the gate period. The net effect is to subtract the i-f from the LO frequency and to present the received-station frequency in the display.

The action is similar to that of the divide-by-n counter, and the data can be either hard wired with short jumpers to ground the appropriate data points; or some can be fixed and some variable, using diode logic or switches made to provide the BCD information. The addition of the data input system in no way affects the normal usefulness of the counter, because the reset input and the data strobe inputs are independent.

references

1. William King, W2LTJ, "Hex Inverter VXO," ham radio, April, 1975, page 50.
2. 'Multistage Program Divider," TTL App/ications Handbook, Fairchild Semiconductors, Mountain View, California 94042, August, 1973, pages 9-38.
ham radio

50-144-220-432 MHz RECEIVERS

INEXPENSIVE AND UNIQUE MODULAR CONCEPT

- Performance equal to commercial equipment
- Monitor receivers
- Repeaters: using our transmitter, 15 or 25 watt amplifier and COR modules
- 10 channel auto-scan receivers: using our SC- 3 scanner kit and CD-1 crystal deck
- Transceivers using our transmitter module
- Size: $4^{\prime \prime} \times 6^{\prime \prime}-* R X-432 \mathrm{C}$ is $4^{\prime \prime} \times$ 6-1/2"
All Receiver kits are dual conversion with squelch and COR output.

RX-50C	$30-55 \mathrm{MHz} \ldots . . .$.	$\$ 59.95$
RX-144C	$140-170 \mathrm{MHz} \ldots .$.	$\$ 69.95$
RX-220C	$210-240 \mathrm{MHz} \ldots . .$.	$\$ 69.95$
RX-432C	$420-470 \mathrm{MHz} \ldots .$.	$\$ 79.95$

*RXCF $-70 b b$ filter add $\$ 8.50$ to above.

10 CHANNEL SCANNING

SC3 - Capable of scanning up to 10 channels. Scan delay allows both sides of a conversation to be monitored without the scan starting each time the carrier drops. The priority feature allows the user to program the scanner to return to his favorite channel whenever it is active. Price $\$ 19.95$ kit

CD-1 - A ten channel receive crystal deck which utilizes diode switching to select the crystal position required. This module can be used to expand your present single channel receiver to multichannel capability. Price $\$ 6.95$ kit

ORDER FORM

| Item | Part No. | Description | Price | Extension |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |
| | | | | |

Name \qquad Total

Shipping \qquad
City \qquad NYS Resident Sales Tax \qquad
State \qquad Zip \qquad Total Enclosed
\qquad
Master Charge No \qquad BankAmericard No.
TERMS: C.O.D., cash or check with order. PRICES AND SPECIFICATIONS: Subject

We also accept BankAmericard and Master Charge.
CLAIMS: Notify VHF and the carrier of damage within seven (7) days of receipt of shipment.
RETURNS: Obtain authorization from VHF before returning any merchandise.
to change without notice.
SHIPPING INFORMATION: All shipments are F.O.B. Binghamton, N.Y. 13902. Shipments will be made by the most convenient method. Please include sufficient funds to cover shipping and handling. Allow $\$ 1.00$ for each item.

BANKAMERICARD

synthesizer for binaural CW reception

If you tune your receiver across a CW signal with the bfo centered on a broad i-f passband, the beat note will change from high to low. As you continue tuning, the CW note will progress through zero beat from low to high again.

If, however, instead of using the usual single-channel audio system you provide two channels with the frequency response shown in fig. 1, feeding stereo phones or two speakers, an interesting and pleasing result is obtained. Tuning as described, but with the twochannel audio system described here, a signal will move from left (lower frequency) to center, then to the right (higher frequency) followed by the reverse action, spatially as the tone changes. If you switch to a narrower i-f bandwidth and adjust the bfo frequency to equal the crossover point of fig. 1 away from i-f center, you'll obtain the right-center-left signal movement without the mirror image, and the spatial

Don E. Hildreth, W6NRW, P.O. Box 3, Sunnyvale, California center of the signal will be at the crossover design frequency.

Thus a new dimension is added to CW signals. Can you imagine how it would be when conversing with several people at once if all the voices came from the same location? We have two ears - let's use them.

With the system described, when interference occurs a few hundred Hz or so removed from the frequency of interest, you tune the signal you want to center, leaving the others to the right, or to the left.

components

Op amp active filter designs make this task easy and predictable. As building blocks 1 used a class of op amp filters shown in fig. 2.* I chose good grade $0.01 \mu \mathrm{~F}$ ceramic capacitors, then selected resistance values from the standard 5 per cent, $1 / 4$-watt range to set low- and high-pass filter rolloff fre-

fig. 1. Relative channel frequency responses for right and left binaural CW, voice, or music reception.
quencies. You can use 10 per cent resistors with good results; except that when you try to place the crossover frequency in the center of a narrowband audio filter, or in a very narrowband i-f filter, careful resistance-value pruning enters the picture. I know of no integrated circuit op amp that doesn't loaf in this task - the well-known 741 a good choice.

design requirements

How sharp must the frequency rolluff be to get a good stereo effect? I . vund that two stages each of low- and high-pass filtering provide good separation (four poles, or a rolloff of 24 dB per octave). More stages and more critical adjustment would be necessary if this system were fed from a source with bandwidth of less than 200 Hz or so. It can be done, but receiver tuning would become difficult and narrowband noise would begin to sound too much like the desired signal. A binaural system reduces the need for those very sharp filters.

The complete circuit is shown in fig. 3. You'll note that the gain setting resis-

[^3]tors are of different values for the lowand high-pass channels. Their ratio is the same, but values were selected to obtain parallel resistances in each case that are approximately equal to the op amp's positive input port dc resistance to ground. This condition is desirable to encourage a minimum dc offset at the op amp's output.

exalted operation

If you want to accept some added complexity it's possible to obtain the kind of response shown in fig. 4. In this case the gain ratio resistors (those connected to the op amp negative input port) are changed to produce filter peaking. In this way a combination of audio filtering and binaural operation is obtained. The resistance ratio required to provide up to 20 dB of exalted operation is shown (10 dB per stage). It's possible to provide more exaltation effect but adjusting resistance values becomes increasingly critical; at some point you'll have an oscillator.

fig. 2. Basic op amp circuits for 3 dB low- and high-pass filters. Center frequency, $f_{o}=$ $1 / 2 \pi R C$, where network R and C are equal.

fig. 3. Schematic of the binaural synthesizer. For $\mathbf{7 5 0 - H z}$ crossover, $R=21 \mathrm{k}$; low channel is offset $\mathbf{5 \%}$ high and high channel is offset 5% low to compensate for underlap due to four-pole cascade in each channel and overlap caused by approximately 4 dB of peaking on each side of the crossover point.

The unit shown is designed to work from a low-impedance drive, such as a receiver's speaker output. The 47 -ohm resistor at the input is for those who wish to use the design with a solid-state receiver that couples to a speaker through a large capacitor. Op amp input ports must have a dc return path to ground, and this input circuit ensures it. If you want to drive the system from a high-impedance phone circuit, simply

fig. 4, Typical lowpass response shape with peaking adjusted by gain selection of R_{b} / R_{a}.
connect the receiver to the input through about 2.2 k ohms and increase the value of the 47 -ohm input resistor to 470 ohms.

The 47-ohm resistors shown in series with the outputs are used to avoid oscillation in the event that 8 -ohm headsets or speakers are connected directly to the output. Also, small dc offsets will not produce immediate limiting on the positive or negative audio half cycle if a low-resistance dc path to ground is connected to the outputs. An op amp's output current capability will drive 2 k -ohm phones to all the volume you'll need; unfortunately 1 haven't found any $2 k$ ohm stereo phones. Moderate levels are passible with 8 -ohm loads.

conclusions

This binaural synthesizer provides more advantage as interference increases. When the band becomes crowded you may wonder how you have been able to get along without such a device.
ham radio

If Santa had a Altair...

Santa might be possible!

Have you ever wondered how Santa keeps track of all the addresses of all the children in the world? How he knows who gets what?

With an Altair 8800, Santa might have a fighting chance. He might be able to keep up with the ever-expanding toy industry. He might be able to remember who's been naughty and nice.

With an Altair 8800, Santa might be possible.
This Christmas you can do something that's never before been possible. You can put an Altair under your tree or under the tree of a friend. Or you can start with our special Christmas 75 time payment plan!*

The Altair 8800 is the NUMBER ONE hobby computer in the whole world. No other computer offers you the power and versa-tility-the proven track record-of the Altair 8800 at a comparable price. No other hobby computer offers you the sophistication of Altair BASIC software or the wide variety of Altair modules and peripherals. No other hobby computer offers you the customer support of an Altair (free membership in the Altair Users Club, free access to the Altair Service Department and the Altair Software Library, and a free subscription to the Altair monthly publication, Computer Notes).

Order now and avoid the last minute Christmas rush!

* Christmas 75 Time Payment Plan

1K Altair for Just $\$ 68.00$ a month!

The Altair time payment plans allow you to be the owner of an Altair 8800 with 1.024 bytes of memory for just $\$ 68.00$ a month. Each month (for 8 months) you send in your payment and we send you part of an Altair kit until you have the complete system. The advantages of this plan are NO interest or financing charge, GUARANTEED price based on today's price, and free, immediate membership to the Altair Users Group including subscription to Computer Notes.

Our terms are cash with order. BankAmericard or Master Charge. If you send in an early payment we will make an early shipment. By the same token, a late payment will result in a late shipment. (After 60 days past due, the balance of the deal is cancelled. All payments must be made within 10 months).

Total Price: $\mathbf{\$ 5 4 4}$ (Retail price: Altair $\mathbf{5 4 3 9 .}$ Memory $\$ 97$, Postage and handling $\$ 8$-total 5544)

HARDWARE PRICES:

Altair Computer kit with complete assembly instructions

*The Comter II Computer Terminal has a full alpha-numeric kevboard and a highly readable 32 -character display. It has its own internal memory of 256 characters and complete cursor control. Also has its own built-in audio cassette interface that allows you to connect the Comter II to any tape recorder for both storing data from the computer and feeding it into the computez. Requires an RS232 Interface Card.

SOFTWARE PRICES
 Altair 4K BASIC

Purchasers of Attair B800, 4 K of Altair Memory, and Altair Serial $\$ 350$ Audio-Cassette 1/O ... 560
Altair 8K BASIC .. 5500
Purchasers of an Altair 8800, BK of Altair Memory, and Altair Serial I/O on Audio-Cassette I/O ONIr $\$ 75$
Altair EXTENDED BASIC
Purchasers of an Altair B800, 12 K of Altair Memory, and Altair Serial I/O or
Purchasers of an Altair B800, 12 K of Alrair Memory, and Allair Seriai
Audio-Cassette I/O............................. $\$ 150$ Audio-Cassette 1/O
Altair PACKAGE ONE (assemblec, text editor, svstem moniton)
Purchasers of an Altair $8800,8 \mathrm{~K}$ of Altair Memory, and Altair I/O ONIY $\$ 30$
NOTE: When ordering software, specify paper tape or cassette tape.
Warranty: 90 days on parts for kits and 90 days on parts and labor for assembled units. Prices, specifications, and delivery subject to change.

"Creative Electronics"

MITS/6328 Linn N.E., Albuquerque, NM 87108 505/265-7553 of 262.1951

[^4] send money order or use charge card

multiple band master frequency oscillator

Construction details
for a varactor-tuned master frequency oscillator featuring multiple frequency capability

The frequency control system for any receiver or transceiver being considered for construction is obviously of prime consideration. The voltage-variable diode (varactor) offers significant flexibility in the design and construction of a variable-frequency oscillator. Parallelplate capacitors suffer from the effects of mechanical rigidity, temperature, humidity, and just plain volume limitations. The varactor is an order of magnitude smaller in size, and is less sensitive to thermal and mechanical stress. For frequency tuning applications, the varactor is considerably simpler to tune and align than its conventional mechanical equivalent.

When a voltage source is used to reverse bias a P-N diode junction, the width of the diode's depletion region varies in proportion to the applied voltage, with the width of the depletion layer increasing with increased bias. This results in an effective capacitance which acts as if it were in parallel with the diode. The amount of capacitance per unit voltage is a function of the variation of the impurity concentration in the depletion region of the diode's P-N junction. If a diode is coupled to a tank coil and the bias across it is varied, the tank circuit resonance will change in proportion to the change in diode capacitance.

circuit design

Fig. 1 shows a precision variable frequency oscillator suitable for general purpose receiver and transmitter frequency control. All rf generating and control components are completely contained within a standard aluminum chassis box.* Since the oscillation frequency is dependent upon the LC ratio and the tuning capacitance is controlled by a voltage rather than the position of parallel plates, a potentiometer is used to vary the diode bias between two volt-

fig. 1. Construction of the varactor tuned master frequency oscillator, Brass flywheel provides very smooth tuning from one end of a band to the other.
age points corresponding to the desired upper and lower capacitance.

If an ordinary single-turn pot is used as the control element, resolution would be very poor, with bandspread similar to a single-turn parallel plate capacitor. To provide additional bandspread in a conventional vfo the frequency-determining capacitor is often mechanically driven by a system of gears so that a single turn of the tuning knob represents a small incremental change in frequency. If a varactor is used as the control element, a small change in voltage will cause a corresponding change in the oscillation frequency.

Although the voltage-control potentiometer for the varactor could be used with a mechanical reduction scheme, most single-turn pots have very poor resolution; at some small discrete points along the wiper surface discontinuities occur which could reflect in an undesirable voltage being applied to the varactor. In addition, many low cost, singleturn pots are often noisy. The noise can be caused by a faulty internal termination, foreign particles or oxidation of the resistance element. The noise then appears as a random voltage, which can cause erratic varactor operation.

If you want to use a single-turn pot in a varactor-tuned vfo, an expensive servo type unit is recommended. The most practical alternative is to use a tenturn unit, and a wide selection is available at modest cost. With a ten-turn pot to control varactor bias, a full ten rotations of the knob are available for tuning or frequency selection.

All potentiometers have considerable friction associated with the moving element. As shown in fig. 1, a simple

[^5]
quency oscilator. Varactor ER1 is a Motorola
MV1652 or equivalent. Typical tuned circuit values for three popular vfo ranges are listed in table 1. Transistor selection is discussed in the text. R2 is a Beckman model 7426 RIK Helipot; R1 and R3 are Beckman Helitrims, model 78LRIK or equivalent.
flywheel design will provide an exceptionally smooth tuning "feel" for the operator. The suggested 2 -inch (50 mm) diameter brass flywheel provides enough inertia that a single knob spin will traverse all ten turns of the pot for rapid end to end band tuning.

A circuit for a varactor-tuned master frequency oscillator is shown in fig. 2 The frequency determining network consists of the inductor, L1, the NPO capacitor C 1 , and the varactor, A Motorola MV1652.* The $0.001 \mu \mathrm{~F}$ ceramic capacitor provides dc blocking of the varactor control voltage. A $0.005 \mu \mathrm{~F}$

[^6]ceramic or similar value will perform as well.

The NPO capacitor, C1, can be small as compared to the total change in varactor capacitance for the desired frequency range, and provides some compensation due to thermal effects in the system. Only slight loss in thermal stability would be apparent if a 10 to 30 pF dipped mica capacitor were used.

The frequency range is adjusted by the resistance network consisting of R1, R2 and R3. Maximum varactor capacitance occurs when the anode is at ground potential; minimum capacitance occurs when the anode is reverse biased at -20 Vdc . Potentiometers R1 and R3 act as voltage dividers for the main tuning pot, R2.

Current through the varactor is negligible, and scaling of the values shown for R1, R2 and R3 is possible. Transistor Q 1 is the basic oscillating element

fig. 3. Component placement for the printedcircuit board used for the varactor tuned vfo. Full-sized PC board is shown in fig. 4.
with Q2 and Q3 buffering the output signal to minimize the effects of external loading. The output of Q1 is coupled to both Q2 and Q3 simultaneously so that the buffer stage can drive external circuitry in a receiver or transmitter. The separate buffer stages permit the use of a high level signal from one section in a receiver mixer stage where the conversion gain is dependent upon having an input of 2 volts peak to peak or greater.

The signal from the other buffer stage can be conditioned through filters for transmitter applications requiring lower harmonic content. This is because the normal low-impedance filter will reduce the vfo signal far too much for most receiver mixer applications. The growing popularity of digital frequency displays is also good justification for the separate buffer as it isolates the counter clock from the other receiver circuits.

construction

With the exception of the varactor voltage divider and the inductor, all components are mounted on a printedcircuit board. Fig. 3 shows component
placement on the board. All resistors are $1 / 4$-watt units, although $1 / 2$-watt parts may be used by mounting them vertically. Low-value coupling capacitors are of the dipped-mica type; however, glass or silver-mica units are satisfactory. The $0.05 \mu \mathrm{~F}$ ceramic bypass capacitors are low-voltage (20 volt) types; 50 or 100 volt capacitors are approximately the same size and should fit the board equally well. The rf chokes are miniature low-current types.

The selection of Q1, Q2 and Q3 is not difficult. The 2 N 4416 is the first choice and matches the board layout with case grounding provisions included to minimize random oscillation. The 2N5459 and similar three-terminal epoxy fets work equally well with only slight reduction in output levels. If you have two or three N-type fets in your junk box, give them a try. Even the most general-purpose chopper types I tried seemed to work well.

fig. 4. Full-size printed-circuit layout for the master frequency oscillator. Component placement is shown in fig. 3 .

Before installing the PC board into the enclosure, attach the wire leads for the inductor, +12 volts and the varactor tuning voltage. The inductor can be temporarily attached to the ends of the wire and left to dangle free in the air. Connect +12 volts and an adjustable negative voltage (not greater than - 20
volts) to the appropriate leads. Initial testing of the board can be accomplished in this fashion to insure that the circuit is working properly.

By varying the negative voltage between zero and -20 V , and adjusting the slug in the inductor, a 3 to 6 MHz signal should be present at the outputs. Although the design shown here incorporates the entire circuit in a compact package, the voltage divider and varactor-tuning potentiometer do not have to be adjacent to the varactor. This is one of the advantages of this circuit.

Table 1 lists the LC components and the setting of the frequency-control pot, R2, for three different frequency ranges. Final adjustment of R1 and R3 should not be accomplished until the assembly is installed in the receiver or transceiver because thermal gradients will affect the operating frequency. When adjusting R1 and R3 remember that there is a perceptible voltage change at both ends of the varactor control pot. Inexpensive ten-turn trim pots are recommended for precise adjustment. However, single-turn, low wattage units are satisfactory, although they may require a little more tweeking for final frequency selection.

To calibrate the vfo first set R2 to the appropriate voltage level shown in table 1 and adjust the slug in L1 for either the high or low end of the band by monitoring the output frequency
table 1. Tuned-circuit values for three popular vfo tuning ranges. The negative voltage levels shown for potentiometer R2 are for initial setting only; final adjustment must be made in the enclosure to compensate for thermal effects. Varactor is a Motorola MV1652 or equivalent.

frequency range (MHz)	inductor L 1	```capacitor C1 (NPO)```	R2 voltage range (-volts)
3.045-3.545	8.85-12.0 $\mu \mathrm{H}$	10-30 pF	3.5-17.0
	Miller 20A105RB		
3.500-4.000	8.85-12.0 $\mu \mathrm{H}$	10-30 pF	3.3-12.5
	Miller 20A105RBI		
5.000-5.500	$\approx 8 \mu \mathrm{H}$	15 pF	5.5-14.0
	Miller 20Al05RBI (slug removed)		

with a digital counter or calibrated receiver. The output signal level at both J 1 and J 2 should be between 2 and 3 volts peak-to-peak, depending upon the device used at Q1.

power supply

A well regulated, low ripple - 20 volt varactor bias supply is necessary for best results. The reason for this is apparent if you look at the 3.045 to 3.545 MHz oscillator parameters listed in table 1. In this case the ends of potentiometer R2 are at -3.5 and -17 volts, a total range of 13.5 volts. If a 13.5 volt change in varactor bias will produce a 500 kHz change in the operating frequency, a simple calculation will indicate how much frequency variation can be expected for each millivolt of ripple on

the varactor bias supply:

$$
\Delta f=\Delta V_{B}\left(\frac{f_{2}-f_{1}}{V_{B 2}-V_{B 1}}\right)
$$

where Δf is the frequency variation, ΔV_{B} is the ripple on the bias supply. (f_{2} $\left.-f_{1}\right)$ is the tuning range, and $\left(V_{B 2}\right.$ $V_{B_{1}}$) is the change in varactor bias for the tuning range. For the 3.045 to 3.545 MHz vfo

$$
\Delta f=0.001\left(\frac{500}{13.5}\right)=37.04 \mathrm{~Hz} / \mathrm{mV}
$$

Therefore, for each millivolt of ripple on the bias line, there is a corresponding change of about 37 Hz in the oscillation frequency (this would change somewhat at opposite ends of the tuning band). However, the 1 mV ripple across the varactor is related to the ripple on the -20 volt source by the same ratio as the voltage divider. By simple proportion

$$
\frac{-20 \text { volts }}{-13.5 \text { volts }}=\frac{\Delta V}{1 \mathrm{mV}} \Delta V \approx 1.5 \mathrm{mV}
$$

For each 1.5 mV of ripple on the -20 volt source you can expect a 37 Hz
change in operating frequency. For CW and ssb operation it is desirable to keep the total frequency deviation to less than 150 Hz . This means that the -20 volt bias source should have a ripple content no greater than 6 or 7 mV . This can best be achieved by using precision IC voltage regulators similar to the one shown in fig. 5.

parts substitutions

My experience from previous articles indicates that home builders are often faced with parts substitutions, and usually write to the author for advice. A typical case might be the use of a $0.047 \mu \mathrm{~F}$ or other value bypass capacitor as a substitute for $0.05 \mu \mathrm{~F}$. In this application any value between 0.02 and $0.1 \mu \mathrm{~F}$ should work fine. The 220 and 150 pF units may be replaced with mica capacitors up to approximately 450 pF . The only problem here is board fit, and some capacitors may necessitate some lead bending. The 50 pF mica output capacitors may be replaced with any value from 20 to 500 pF .
ham radio

Yaesu FT101 clarifier

I have just completed the modification to my FT101 as described in ham radio ${ }^{1}$. When the modification is completed, depending upon whether the clarifier was turned on or off, the frequency shift may not be a complete zero beat. If the clarifier is turned off when the mod is done, the clarifier will be about 2 kHz high when turned on in the USB mode. If the operator does not care about the calibration of the clarifier, this does not pose a problem, but if he prefers to use the calibration of the

[^7]clarifier, the following is recommended: Set the clarifier pot to zero before beginning the alignment procedure, and follow the procedure described in ham radio. When this is done, and sidebands are changed, the clarifier need not be adjusted to a new zero point and will remain within calibration.

Since I always leave my clarifier turned on, and at the zero position, this is the most comfortable procedure for me. To change sidebands and retune the receiver I just use the clarifier. Otherwise I would have to readjust my thinking when changing sidebands and then turn on the clarifier (as the calibration would not be correct).

Eric Falkof, K1NUN

soldering-iron holder

How to build a soldering-iron holder

which reduces tip heat

when the iron

is not in use

Perhaps the most important tool used by the electronics experimenter is the soldering iron. It is indispensable when making repairs or building new equipment, and is frequently turned on for hours at a time. This extended time of use takes its toll in corroded tips and burned-out elements.

Radio servicemen learned long ago that they could keep a sharp bright tip on their irons by cutting down the voltage to the iron during those long periods between use. Many old pros would juryrig a holder on their service bench for
this purpose. A bulky heating element was often used in series with the iron when it was at rest in the holder. When the iron was picked up a leaf switch would short out the heating element, allowing full 117 volts to the iron.

In later years commercial holders for soldering irons became available. Some fine thermostatically controlled holders are widely used in the aerospace industry. Printed-circuit boards have called for smaller irons and lower temperatures. Practice has shown that 50 to 70 volts is sufficient to keep the iron ready to go, but low enough to prevent damage to the tip. Variacs have also been widely used to set the iron voltage to the required value.

Described here is a nifty solderingiron holder that makes use of modern readily available components, and can be assembled in a couple of hours. All parts can be obtained from your hard-

fig. 1. Using a commercial light dimmer to control saldering-iron heat.

fig. 2. How to use a semiconductor diode to control soldering-iron heat. In this circuit a microswitch shorts out the diode when the soldering iron is lifted for use. When the iron is placed in its holder, the diode is switched into the circuit, reducing the effective power to the iron, by virtue of half-wave rectification.
ware store or radio shop. The sheet metal work is simple and straightforward.

There are two methods for controlling soldering-iron heat. The first simply uses a light dimmer control as shown in fig. 1. Find the position of the knob where the desired heat is obtained at the soldering iron's tip. Then remove the knob. Or, place a mark on the box so the knob can be easily reset when desired.

The other method makes use of a series diode to cut the effective power

Soldering-iron holder which uses the circuit of fig. 2 to control tip heat when the solderingiron is not being used.

to the iron. Any power diode with a PRV rating of at least 300 volts will do. The diode is connected across the normally-closed terminals of a microswitch. When the iron is lifted for use, the internal spring in the microswitch operates, returning the switch to its closed position, shorting out the diode. Full power is then available to the iron (see fig. 2). A handy pilot light tells you that power is on and shows the effect of the series diode.

fig. 3. Side view of the utility box which is used to hold the light dimmer (fig. 1) or microswitch/diode circuit (fig. 2). Fig. 4 shows construction details for the soldering. iron holder.

The pilot light shown in fig. 2 is a surplus 28 -volt lamp with a $3 \mathrm{k}, 2$-watt series resistor. A neon pilot light is okay if connected to the input, but only one of its two internal elements will glow on rectified ac. If used with the light dimmer, a neon pilot will extinguish at the lower voltage.

construction

First, start with an electrical utility box. Drill and tap for a 10-24 machine screw in the upper lefthand corner as shown in fig. 3. Drill straight through both sides of the box and use a 4 -inch $(10 \mathrm{~cm})$ long screw. This will make a sturdy mount for the holder. A spacer made from $1 / 4$ inch (6.5 mm) copper tubing will keep the holder from collapsing when tightening this screw.

Use a conventional wire clamp for the incoming ac line. Choose a socket for the output which has a third wire grounding lug. Use of the ground is important when soldering some ICs and mos semiconductors. Be sure to connect a ground lead from your soldering iron to the circuitry being worked on in these critical applications.

The aluminum parts for the holder can be made from scrap 0.090 and 0.062 inch (2.0 and 1.5 mm) aluminum sheet. Other thicknesses can be substituted to satisfy your own design. The heat shield is held in place with four pop-rivets. Two more pop-rivets are used to fasten the lever to the bottom of
the iron holder. The lever may have to be shaped slightly to fit through the notch in the side of the utility box so it engages the microswitch. Microswitches are readily available at low cost from many surplus outlets.

Buy a tip cleaner sponge and tray (not shown in the photograph) from a local radio store and cement it on the base just to the left of the ac outlet. Be sure to keep it moistened with a little water. Finally, add rubber feet to the four corners of the base. With your new soldering iron holder you'll have no more burned benches or dull, corroded soldering tips.
ham radio

If you are on 2-meters now

... but you're tired of being stuck with too few channels
. . . and you'd like more versatility
. . . and you really do need tunable VFO
. . . and SSB-CW (don't forget OSCAR!)
... you need Kenwood's NEW

TS-700A

It solves all of these problems and lots more. And best of all . . . the TS-700A reflects the type of quality that has placed the Kenwood name out front.

- Operates all modes: SSB (upper \& lower), FM, AM, and CW
- Completely solid state circuitry provides stable, long lasting, trouble-free operation
- AC and DC capability. Can operate from your car, boat, or as a base station through its built-in power supply
- 4 MHz band coverage (144 to 148 MHz) instead of the usual 2
- Automatically switches transmit frequency

600 KHz for repeater operation .. . reverses too

- Outstanding frequency stability provided through the use of FET-VFO
- Zero center discriminator meter
- Transmit/Receive capability on 44 channel with 11 crystals
- Complete with microphone and built-in speaker
- The TS-700A has been thoroughly fieldtested. Thousands of units are in operation throughout Japan and Europe

The TS-700A is available at select Kenwooc dealers throughout the U.S. For the name o your nearest dealer, please write.

Kenwood. . . pacesetter in amatcur radio
Distributed by

TRIO-KENWOOD COMMUNICATIONS INC.

dipole antennas

A few basic ground rules

 applied to the installation of
this simple antenna

> can pay off in excellent

performance

The halfwave dipole antenna is hard to beat as an effective radiator of rf energy when considered in terms of low cost and ease of construction and tuneup. I'd like to report the results of my experience with this simple antenna for those now using a dipole or who would like to try one. Careful attention to materials, installation, positioning (or orientation), and tuning can make a big difference in performance. Many amateurs swear by the dipole as an antenna for portable work because of its simplicity. The following ideas should be helpful in planning your next dipole or improving your existing installation.

The quarter-wavelength legs of my dipoles have been made of many different materials: insulated copper wire, annunciator wire, aluminum wire, tubing, and even TV twinlead. All will work, but my recommendation is number-14 stranded copper wire. It's easy to handle and causes fewer construction problems than most other materials. Its strength per unit length is excellent and it withstands weather for a long time without failing.

An inexpensive bow and arrow set should be included in your dipole inventory. An 8 - or 12 -pound (3.6 or 5.4 kg) test nylon fishing line tied to the end of an arrow can be shot over a tree, house roof or similar support. A heavier length of line is then secured to the original line and, in turn, secured to your antenna wire. The whole works is then pulled into position. If the far end of your support is a tree, the arrangement shown in fig. 1 is one way to eliminate problems with wire breakage due to wind, or wear of the securing line due to friction.

Other antenna supports that can be used are interlocking sections of TV masting, wooden doweling, or the Aframe mast which is described in the ARRL Handbook. A husky bamboo pole is another possibility.

installation

I devised the wagonwheel concept (fig. 2) to help bring order and logic into resolving the dipole antenna installation problem. Some may think this is a simplistic approach; however, it makes sense to me because any compromise with any segment of the wagonwheel
results in a flat wheel, and who needs that? My dipole wagonwheel has five segments. Let's consider them in order.

Positioning. It might sound trite, but the best antenna is one that's located as high as possible and in the clear. This means the radiating (and receiving) wire should be positioned as far as possible from telephone wires, metal house siding, fences, and the like. If the antenna is located close to trees or shrubbery,

fig. 1. Suggested method of securing the far end (or both ends) of a dipole antenna, using nature's remedy.
the electrical characteristic of the reflecting surface will be adversely affected. ${ }^{1}$

Each of my dipoles is constructed for one band; ideally the height above ground for each antenna should be onequarter wavelength minimum for that band. Notice I said "ideally." The ideal situation is hard to achieve. If you must compromise on antenna height, try to compensate by observing the other installation hints mentioned here. See fig. 2.

Another consideration is the placement of two or more antennas. I once tested a long-wire antenna that had an antenna tuner and an swr meter in the transmission line. I was transmitting using a dipole about 15 -feet (4.58 m) away. It turned out that the long-wire antenna was absorbing a great portion of the signal radiated from the dipole. This makes me wonder how much power is lost in direct and harmonic absorption. So now my rule is, "Keep antennas separated and preferably oriented in a different plane of transmission."

Resonant frequency. This is the second segment in the dipole wagonwheel (fig. 2). After selecting your desired band and the part of that band in which you wish to work, the leg lengths of your dipole are easily determined from formulas in the ARRL Handbook. The lengths given in these formulas are usually somewhat long, which is fine for cut-and-try installation.

The resonant frequency is most accurately determined when measurements are made as close as possible to the base of your antenna. You'll need an rf source and, depending on the technique you wish to use, an swr meter, grid-dip meter/antenna bridge, or noise bridge.

The swr technique is easiest to use in testing a dipole antenna. However, there are restrictions as to the readings because there is no direct method of exactly reading either frequency or impedance. After the dipole has been placed in its operating position, a test length of coax cable is attached to the feedpoint, which should be a balun (see the discussion on wagonwheel segment 4). The other end of the test coax line is attached to your rf source (a transceiver in my case).

My test piece of coax is cut for a multiple of one-half electrical wavelength at the frequency at which I wish to test my antenna. I cut the coax test line slightly longer than a multiple of
one-half wavelength, then made a shorting device from a straightened safety pin to obtain this length exactly. This test line can be used for all three methods of antenna testing.

With the test line attached to the swr meter and the rf generator, tune across the band in $100-\mathrm{kHz}$ increments with the set tuned to maximum output, then

fig. 2. The dipole wagonwheel - a useful ad. junct to the installation problem.
reduce power. The swr meter is set at full forward reading, then reflected power is recorded. Where the lowest reflected-power reading occurs is the antenna resonant frequency. If the swr is more than unity, don't worry. An swr of 3 or 4 is acceptable in amateur work.

Impedance. Using the grid-dip meter/ antenna bridge method, select the correct frequency probe for the grid-dip meter, and with the meter turned on, you can spot your desired frequency on the transceiver. The grid-dip meter acts as a transmitter for your desired frequency. Connect the test line to the antenna bridge. By varying the grid-dip meter dial, you'll get a dip on the antenna bridge at the antenna resonant frequency and you'll know whether the wire is too long or too short. The
antenna bridge will also show antenna impedance.

In the noise bridge method, an a-m receiver signal is used. The bridge is attached to the receiver and turned on. The noise bridge will produce an output that is like atmospheric noise. As you tune the receiver across the band for which your antenna is cut, you'll obtain a null in the noise at the antenna resonant frequency. As with the antenna bridge, the noise bridge has an impedance dial that, when set to your antenna impedance, will produce a noise null. You can read an antenna resonant frequency and impedance fairly accurately.

At this point l'd like to include two personal notes. First, the bridge operates only with an older type a-m receiver. Second, be sure your leads from the receiver to the bridge are short (not over 10 to 12 inches or $25.4-30.5 \mathrm{~cm}$). 1 made these notes not from textbook directions but from yardwork failures.

Antenna impedance matching can fill a large textbook. With a dipole you can approach 50 ohms by changing the angle of the legs from the horizontal or by using a matching system. With my 20-meter dipoles, I use a piece of wire 42 inches (1.07) long with a clip at each end. One clip goes to each side of the

fig. 3. Delta match. Pins are used to obtain correct impedance match. Permanent installation should be soldered and weatherproofed.
balun connection (fig. 3). This matching system works well for me. An alternative is a matching stub as shown in fig. 4.

Balun. For quite a time I didn't understand about the balun and therefore didn't use it. Later I used the balun incorrectly thinking that it tuned out all of my antenna faults. However, the balun is

a necessary device in a balanced antenna system such as a dipole. Radiofrequency energy propagates along the coax at a different rate in the shield compared to that in the center conductor. The result is that antenna currents will appear on the outside of the shield braid, and these currents will radiate. ${ }^{2}$ Such radiation causes undesirable antenna performance and is often the culprit in TVI. The balun will often reduce rf radiation from the coax.

Transmission line. Use only top-quality foam-dielectric RG-8A/U coax cable. I have lengths of cable to reach from the antenna to my swr meter, which are cut in multiples of one-half electrical wavelength determined from charts in coax cable handbooks and checked with a grounding pin made by straightening a safetypin. Using the grid-dip meter and antenna bridge test described earlier will produce such a length of coax.

In testing the correct length of coax to use, start at the signal source with the antenna bridge/grid-dip meter setup and
include swr meter, in-line wattmeter, and lowpass filter. Coax transmission line lengths can also be measured in one-half electrical wavelengths by using an antenna noise bridge.

dipole variations

The dipole is the basis of all highfrequency antenna systems. This simple structure can be expanded almost without limit to produce extremely complex directive arrays. For example, a directive antenna used in France in the early 1940s for shortwave transmitters operating around 8 MHz had three horizontally oriented bays of six dipoles each, with each set of dipoles arranged in a diamond configuration. Each bay of six dipoles constituted one element of a three-element beam antenna - director, driven element, and reflector. This system was known as a Chireix-Mesny array. ${ }^{3}$

The currents along any diagonal of each diamond had to be exactly in phase, so that the antenna wires served both as radiators and transmission line - truly an installer's nightmare. Such arrangements were popular for a short time but were eventually abandoned because of construction expense and tuning difficulties.

I have installed wire directors and reflectors in my dipole systems, used coil traps, and tried to decrease physical space requirements by installing the dipole ends at different angles from the horizontal. I still like the simple halfwavelength dipole as described and built according to the wagonwheel concept shown in fig. 2. This is the antenna 1 use today - simple and effective.

references

1. Arnold B. Bailey, TV and Other Receiving Antennas, pp. 182-183, John F. Rider, Inc., New York.
2. The Radio Amateur's Handbook, ARRL, Newington, Connecticut.
3. F.E. Terman, Radio Engineers' Handbook, McGraw-Hill, New York, 1943.
ham radio

YES!

There is an antenna that your neighbors will love! We know you're not going to believe your

 neighbors will like your new 20 meter beam; but just wait until they CAN'T see lt.Introducing a little functional beauty. The new DenTron trim-tenna ${ }^{\mathrm{TM}} 20$ meter beam.

The trim-tenna ${ }^{\mathrm{TM}}$ is designed for the discriminating amateur who wants fantastic performance in an environmentally appealing beam.
It's really loaded! Up front there's a 13 feet 6 inch director with precision $\mathrm{Hy}-\mathrm{Q}$ coils. And, 7 feet behind is a 16 foot driven element fed directly with 52 ohm coax.
The trim-tenna ${ }^{\text {M }}$ goes up on your roof, tripod, or chimney as easily as a color TV antenna.
The difference in on-the-air performance between the trim-tenna ${ }^{\text {TM }}$ and a full size 2 element beam is negligible. But oh the difference between the trim-tenna ${ }^{\text {TM }}$ and that dipole, long wire or inverted Vee you've been using.
trim-tenna ${ }^{\text {TM }}$. . . 129.50 post paid U.S.A. from DenTron Radio or your favorite dealer.

- The secret is proper placement of factory sealed Hy - O inductors
- Heavy gage seamless aluminum
- Light weight
- SWR less than 2:1 over the entire band

Denirar

Radio Co., Inc. 2100 Enterprise Parkway Twinsburg, Ohio 44087

The super has. evolted.

 Super tuner

The phenomenal performance of the 1 KW Super Tuner ${ }^{\text {TM }}$ has naturally led to the development of our dynamic 3KW Supet Super Tuner, commonly known on the air waves as the "DenTron SST."
This 22 pound slave to full power amplifiers promises 3KW PEP comfort. The "SST' has continuous tuning coverage from 1.7 mhz to 30 mhz .
Whether your antenna be fed with single wire, Coax, or balanced tuned feeders "SST" efficiently tunes it with ease.
DenTron Radio Co.-Proud to say "Made in the U.S.A."I
Super Tunerm (A) $\$ 119.50$ post paid in U.S.A. from DenTron Radio or your favorite dealer. Super Super Tuner ${ }^{T m}$ (B) $\$ 229.50$ post paid in U.S.A. from DenTron Radic or your favorite dealer.

Dentron

Radio Co., Inc. 2100 Enterprise Parkway Twinsburg, Ohio 44087

Collins R390A

modifications

Several simple modifications for the R-390A

which can considerably

> improve performance

With the R390A receiver, it sometimes pays to work around a built-in problem or known trouble, rather than make extensive repairs. Here are some simple and somewhat complex modifications that may help, depending on the trouble you have.

Audio section. If you have audio problems, it may be due to a mismatch. All of the audio outputs are 600 ohm. A pair of high-impedance (3000 ohm) headphones will work as is. For lowimpedance (8 ohm) speaker or phone use, the output transformer from a small tube type receiver or one of the universal replacement types will provide a reasonable match.

If there is still trouble, the entire audio section can be completely by-
passed by using the diode load terminal at the back of the set. Leave the jumper connected and couple the signal to an outboard amplifier and speaker through a suitable blocking capacitor (fig. 1). A hi-fi amplifier used with the R-390A will give you beautiful shortwave broad-cast-band listening. The added clarity will help amateur band reception too.

I-f section. Ssb reception with the R-390A has a mushy audio quality because of the envelope detector and the low bfo-to-signal ratio. One solution is to rewire the detector as a product detector. ${ }^{1}$

The set can also be used with a companion ssb adapter fed by the i-f output jack. There are advantages to building an adapter for the set rather than converting the existing circuit: you will have more room to work with; you can choose your own parts layout; and, you can build as elaborately as you want. More important, you should be able to get better performance from a totally outboard unit than by piece-meal modifications to the set.

Originally these sets were stagger tuned to improve the bandwidth characteristic. For amateur use the i-f stages can be retuned to the same frequency. which noticeably increases gain.

Rf section. When you increase the gain you also increase the noise. The rf gain control works in both the rf and i-f sections. As the set is now there is no way to vary the i-f gain without adversely affecting the rf stage.

The rf stage determines the overall sensitivity and noise level of the set. Removing the rf amplifier cathode circuit from the rf gain control and grounding it directly lets the stage work at its maximum gain and sensitivity. The cathode resistor (fig. 2) runs from the tube socket to a nearby standoff insulator where it connects with the rf gain control wiring.

Remove the wire from the standoff and tape it out of the way so it can't short. Then run a short wire from the resistor end on the standoff to a convenient ground lug, it would be a bit fussy, but you could run a shielded cable to a switch on the front panel and make the modification optional.

While the modifications are simple to make, you will need the manual to safely disassemble and reassemble the rf deck. Without it, it is too easy to damage the set or misalign the tuning mechanism.

It is possible to position the rf deck on its side in the main chassis so that the cables will just reach and you will be able to get at the bottom of the subsection chassis for testing or trying modifications with the set in operation.

Be careful when doing this as there is almost no slack in the cables and it is
fig. 1. Diode load audio tap for use with an external audio amplifier.

very easy to break one or damage some other part. Replacing one of the coax cables would try the patience of a saint.

Low sensitivity. If your R-390 seems to have lower sensitivity and higher noise below 8 MHz , and no fault can be
found, try bridging either C281 or C282 (first mixer output coupling capacitors) with a higher value; the gain may come right up. The value probably isn't critical; I replaced both capacitors with 100 pF .

Antenna matching. The unbalanced antenna jack, J103, was intended for a

fig. 2. Modifications for the R390A rf amplifier.
whip antenna with a very short lead-in or a random length of wire. If you are using a longer length of coaxial cable you may be losing most of the signal.

A UG-970/U adapter, used with balanced input jack J104, makes the necessary changes with a substantial improvement. The following modification, originally issued by the Navy as a field change, does much the same thing.

1. Disconnect plugs P205 and P206 from the antenna box inside the set and reverse them: P205 to J106 and P206 to J105.
2. Connect a shorting plug to J104.
3. Connect the antenna to J 103 which, because of the internal changes, provides a much better match to the antenna.

reference

1. Eugene A. Hubbell, W7DI, "Improving the R390A Product Detector," ham radio, July, 1974, page 12.
ham radio

trig functions on a pocket calculator

There are several ways of evaluating log, exponential and trig functions on small hand-held calculators. Here is a method for trig functions which offers some advantages if the calculator has square-root capability. Methods for finding square roots on four-function machines were previously described in ham radio. ${ }^{1}$

The usual scheme is to run out the calculations using the series expansion for the sine or cosine. For the simple four-function machine this has the advantage of requiring only four basic operations. However, it has some disadvantages. The infinite series expressions are difficult to remember. Also, a number of terms of the series must be added together to arrive at a value accurate to three or four decimal places.

With square-root capability sine, cosine and tangent can be done quite simply by making use of a few trig identities. A useful approximation is that for small angles, the sine, the tangent and the angle, expressed in radians, are equal. Table 1 lists some values along with the error for using the angle (in radians) rather than the sine or tangent function. Note that the values for the sine are somewhat closer to the actual values than for the tangent - about a two to one difference. Up to 20 degrees the maximum error is 4 per cent; limit-

1. John Sego, K9DHD, "Finding Square Roots," ham radio, September, 1973, page 67.
ing the angle to 15 degrees keeps the sine error within 1 per cent.

To convert degrees to radians simply multiply the angle by pi and divide by 180. If the angle is 15 degrees or less this immediately gives the approximate sine or tangent. To evaluate the cosine use relation (3) after obtaining the sine. This is very simple on a calculator with square-root capability.

For angles between 15 and 45 degrees use relation (5). First calculate the sine and cosine for an angle that is half the desired angle. Then multiply these two together and times 2 to obtain the sine of the angle. Memory is useful during this double calculation to store the intermediate value for the sine.

To increase the accuracy of the re-
table 1. Values for the tangent and sine of small angles are very close to the angle expressed in radians, as shown here. Trig identities for calculating other functions are shown below.

$\begin{gathered} \theta \\ \text { (degrees) } \end{gathered}$	$\begin{gathered} \theta \\ \text { (radians) } \end{gathered}$	$\sin \theta$	error	tan	error
$1{ }^{\circ}$. 01745	. 0175	0	. 01	0
2°	. 03491	. 0349	0	. 03	0
5°	. 08727	. 0872	0.1\%	. 08	0.3\%
10°	. 17453	. 1736	0.5\%	. 17	1.0\%
15°	. 26180	. 2588	1.2\%	. 26	2.3\%
20°	.34906	. 3420	2.1\%	. 36	4.1\%
	0 (RAD)	$=\frac{\pi}{180}$	01 D		
FOR $0 \leqslant 0 \leqslant 15^{\circ} \sin \theta \approx \tan \theta \approx 0$ (RAD)					(2)
$\cos \theta=\sqrt{1-\sin ^{2} \theta}$					(3)
$\tan \theta=\frac{\sin \theta}{\cos \theta}$					
$\sin 2 \theta=2 \sin \theta \cos \theta$					(5)
$\sin \theta=\cos \left(90^{\circ}-0\right)$					

sult, the above procedure is done in two steps at angles one quarter and one half the desired angle. Between 30 and 45 degrees this method is almost mandatory since the error above 15 degrees is fairly large. An example, table 2, has been worked out for the sine of 45 degrees. The calculated value differs by only 0.5 percent from the actual value.

For angles between 45 and 90 degrees use relation (6). Find the sine and then the cosine of the complement of the angle desired.
table 2 . Using the trig identities shown in table
1 to calculate the sine of 45 degrees. Steps
can be accomplished easily on a pocket calcu-
lator with square-root capability.
$\sin 22.5^{\circ}=2\left(\sin 11.25^{\circ}\right)\left(\cos 11.25^{\circ}\right)$
$11.25^{\circ}=\frac{\pi \times 11.25}{180} \mathrm{rad}=0.19635 \approx \sin 11.25^{\circ}$
$\cos 11.25^{\circ}=\sqrt{1-(0.19635)^{2}}=0.98053$
$\sin 22.5^{\circ}=2 \times 0.19635 \times 0.98053=0.38505$
$\sin 45^{\circ}=2\left(\sin 22.5^{\circ}\right)\left(\cos 22.5^{\circ}\right)$
$\cos 225^{\circ}=\sqrt{1-(.38505)^{2}}=0.92289$
$\sin 45^{\circ}=2(0.38505)(0.92289)=0.71073$
$\sin 45^{\circ}($ from trig table $)=0.70711$
error $=\frac{0.71073-0.70711}{0.70711} \times 100 \%=0.512 \%$

As indicated in table 1, the error for the tangent is somewhat larger than for the sine when using the angle in place of the function. Since the above steps provide simple calculations for both the sine and cosine, relation (4) can be used to find the tangent of any angle.

The trig identities shown here should be at least as familiar as the series expansions for sine, cosine and tangent. In fact, relation (5) is really the only special identity in the group; the others come from trigonometry definitions.

Cal Sondgeroth, W9ZTK

copper-plated circuit boards with terminal inserts

Perfboard with terminal inserts has served well for many projects. What it lacks is the all-important ground plane that an etched board provides. This ground plane can be the difference between a quiet and a noisy mike preamp or the difference between a smoothly acting of or converter stage and one that has a will of its own.

The answer I developed is a marriage of a circuit board copper plated on one side only with the perf board insert terminals. Insulated islands for the terminals was the immediate problem. The solution for this was to use a bit designed to rout channels in wood. Chucked in the drill press, this routing bit takes perfect $1 / 4=$ inch (6.5 mm) circles of copper from the board. Holes are then drilled in the center of the newly created insulated islands and the perf board terminals are inserted. The circuit is then wired point-to-point, with any components requiring a ground being terminated in a hole in the copper ground plane and soldered directly to the copper.

Layout is a common sense approach. Merely pencil a grid on the copper surface, determine where you want the islands, and apply the router bit. A few moments practice on a scrap piece of board will quickly give you the feel of just how much pressure to apply with the router bit to get perfect removal of copper without biting into the board proper.

Duplicate boards may be made by applying identical grids to the blanks. After the islands have been created, the boards may be stacked and drilled in one operation for terminal insertion. If you use care, this method may be used with board material plated on both sides.

Allan S. Joffe, W3KBM

headphone cords

For some time I have tried to purchase replacement earphone cords for my headphones. Over one dozen New York merchants told me they didn't stock them.

Various alternatives (including fourwire rotator cable) were tried, but none of them were satisfactory. If you are faced with a similar problem I would suggest trying Trimm, Inc., for suitable replacement cords.

I tried both their no. 811, standard pin tip terminals, black cotton braid, $41 / 2$ feet (1.4 m) long; and their no. 870, similar but 5 feet (1.5 m) long with a waterproof outer braid. Costs range from $\$ 2.00$ plus postage. A card to Trimm, Inc., Post Office Box 489, Libertyville, llinois 60048 could save you a lot of exasperation.

Neil Johnson, W2OLU

increased selectivity for the Collins 75A4

The ultimate skirt response of the 75A4 selectivity curve can be improved considerably by replacing the second $455-\mathrm{kHz}$ i-f amplifier tank circuit (L27-C80) with a $3.1-\mathrm{kHz}$ Collins mechanical filter (F455J31) as shown in fig. 1 (modification suggested by W4ZKI). Since most amateurs who use the 75A4 for ssb operation have replaced the original $3.1-\mathrm{kHz}$ filter with a $2.1-\mathrm{kHz}$ filter,
the $3.1-\mathrm{kHz}$ unit is seldom used. If a $3.1-\mathrm{kHz}$ filter is not available, a 4.0 kHz filter (F455J40) will still provide a noticeable improvement in skirt response. The L27-C80 tuned circuit is in the i-f can next to the filter capacitor, C94.

Remove the bottom panel of the receiver, disconnect all the leads which go to the L27 i-f can, and remove the two retaining nuts (don't discard the i-f can - you may want to restore the receiver in the future). Cut out a small piece of thin aluminum, $1-3 / 4$ inch (4.4 cm) square, and punch a $3 / 4$-inch (2 cm) hole in the center for a 9 -pin tube socket. Drill the two chassis-mounting holes and position the tube socket so pins 1-2 and 6-7 are aligned with them. Install the

Filter installation in the Collins 75A4.

socket on the plate and fabricate a small brass shield about $5 / 8$ inch (1.6 cm) high. This shield is placed across the tube socket between pins $3-4$ and 8.9 and soldered in place (see mechanical filter sockets A, B and C for reference). Ground all unused socket pins.

Wiring the new filter into the circuit is straightforward and requires only four mica capacitors and one inductor. (C201-C204 and L201 in fig. 1). Install the two 100 pF filter resonator capacitors at the input and output socket pins (the filter is symmertical so either set of pins may be used as the input). Install a small terminal strip next to V8 for the junction of R45, R47, C70, C210 and L201. Delete C69 and R46 as they are not used in the new mechanical filter circuit.

An improvement in i-f gain can be obtained by removing resistor R29 from the plate circuit of V6. This resistor swamps out the Q of L24 and increases the bandwidth for a-m reception; it is not required for ssb or CW operation.

Jim Fisk, W1DTY

muting microphones

Other amateurs must be faced occasionally with the same problem I was: that of disturbing others in the household when talking into a microphone. Headphones, of course, eliminate any speaker disturbance. The microphone problem was solved by attaching a heavy-walled cardboard tube (of the proper diameter) about 3 inches (10 cm) long to the face of the microphone, making sure the joint is completely sealed. By pressing your lips into the open end of the tube, and speaking in a whisper, no sound can be heard in the shack. The fact that the voice is completely retained within the tube compresses the sound, resulting in increased talk power, although it may sound like you're in a barrel. Microphone gain must be reduced considerably.

Ralph Cabanillas, Jr., W6IL

- TOPS IN PERFORMANCE ■ - LOW SILHOUETTE GOOD LOOKS • - V.S.W.R. LESS THAN 1.3 TO 1 ■ - HANDLES FULL 200 WATTS .

Larsen Külrod VHF Antennas are the result of over 25 years of practical experience in the two-way radio field. They are rugged, reliable and built with infinite care to assure top performance. Models available to fit all standard mounts and for all popular amateur VHF frequencies. Each is equipped with the exclusive Larsen Külrod, your assurance of maximum efficiency and no loss of RF through heat. Comes complete with all instructions. Models for 2 meters deliver a full 3 db gain over $1 / 4$ wave whips . . . the 420-440 MHz and $440-460 \mathrm{MHz}$ collinears . . 5 db gain and full 100 watts capability. Sold with a full money back guarantee . . . the most liberal in the mobile antenna field. Whether you work via repeater or simplex you deserve to have a Larsen Kūlrod. Get full fact sheet and prices, today.

11611 N.E. 50th Ave. P.O. Box 1686 Vancouver, WA 98663 Phone 206/573-2722

speech processing

Dear HR:

ZL1BN's article on speech processing in the February, 1975, issue of ham radio covered much of the knowledge which has been available in the literature to the amateur. However, a few ideas to which I have been exposed were omitted. First, no reference was made to the excellent article in $O S T^{1}$ which developed a theoretical and empirical model of intelligibility, a concept which continues to be confusing to most hams with whom I have had relevant discussions.

Secondly, ZL1BN is well justified in his concern for problems of signal-tonoise degradation and power inefficiency resulting from heavy clipping levels, as can be attested by those who have heard, say, a Signal One under full clipping and power in heavy competition. One method which I have found effective in reducing extraneous noise in conjunction with my rf clipping system is the use of an "inverted" audio compressor; that is, an expander. A moderate amount of expansion (5 to 10 dB) seems to keep ambient noise to a minimum without degrading intelligibility. Adapting a good-quality audio compressor such as the RP Electronics RPC-3* to the expansion mode is extremely easy as shown in fig. 1.

Thirdly, an important factor in

1. Harold G. Collins, W6JES, "Ordinary and Processed Speech in SSB Application," QST, January, 1969, page 17.

fig. 1. Basic circuit of the RP Electronics RPC-3 speech processor. Expand function is added by breaking connections between R3 and Q2 gate and between Q1 source and ground and connecting Q1 source to the junction of R2 and C1.

fig. 2. Block diagram of PA@KT's method of achieving an ssb signal with constant amplitude using a fast-acting audio compressor with an offset technique that produces a residual carrier at 1 kHz so that full output can be obtained during pauses in speech.
communications theory (but almost entirely overlooked in the amateur literature) is the role of redundancy in effective transmission of information. On several occasions I chanced to overhear a weak signal of a young amateur who was using a reverbration system in the audio string and was very much impressed at the apparent readability improvement of his signal. I have also heard the use of reverbration by foreign broadcast stations with apparent improvement of intelligibility. Parity test-
*Available from RP Electronics, Box 1201, Champaign, Illinois 61820.
ing, a form of redundancy, is standard practice in computer data transmission.

Finally, it has been mentioned that rf clipping simulates a form of variable pulse-width modulation, which is essentially digital, as opposed to the analog waveform characteristics of unprocessed audio. With the recent introduction of relatively low-cost but powerful and fast mini-computer systems, it may be feasible at this time to develop a real-time speech-processing algorithm for precise computerized control of speech processing parameters.

James G. Limber, K9ZAT
Chicago, Illinois

rf interference

Dear HR:

One common type of RFI to which hi-fi equipment is susceptible is the "thumps and bangs" which come from the thermostats in refrigerators and central heating systems. It is not generally realized that these noises are usually caused by rectification of the radiofrequency component of the unwanted signals, and that any hi-fi equipment which is susceptible to "fridge crunch"
is almost certainly also susceptible to other forms of rf interference.

If your neighbor complains of interference, it is a good approach psychologically to say something along the lines of, "Yes, it is a problem with some hi-fi equipment - it probably picks up your refrigerator as well."' Nine times out of ten you will hit the nail on the head and get your point across. Your neighbor's displeasure at having to get his hi-fi fixed to remove your transmissions will be reduced if you point out that standard RFI measures will

NEW

 VHF POWER METERS

27-450 MHz
Continuous Frequency Coverage
SPECIFICATIONS
Model C1277

Frequency Range
27.450 MHz

Wattmeter Accuracy
10% FS
Power Capability
SSB $\quad 50$ Watts Entire Range
CW $\quad 50$ Watts 100.225 MHz
25 Watts 27.300 MHz
15 Watts above 300 MHz
Connectors
Type "N" Standard (UHF on request)
(Model C1297 Covers 30-250 MHz at 200 Watt Power Rating)

Model C1277 $\$ 89.50$ plus tax Model C1297 $\$ 89.50$ plus tax

Send for data sheet or order direct:

WERLATONE INC.
P. O. Box 258

Brewster, N. Y. 10509
usually remove other unwanted noises as well.

clipping and rfi

It may come as a surprise that while a speech clipper makes your signal sound louder to other amateurs, it actually reduces the level of interference picked up on high-fidelity installation. With an ssb signal the hi-fi system registers the difference between the peaks and the troughs of your voice, and so theoretically if you clip sufficiently (enough to lift the noise between words to peak level), all amplitude variations will be cancelled, and the RFI will disappear.

In practice, if an rf speech clipper is used with around 6 to 10 dB of highfrequency pre-emphasis, ${ }^{2}$ about 30 dB of clipping can be applied without objectionable distortion. At this level of clipping, unless you run a very substantial linear, input power has to be reduced somewhat and a combination of this with the clipping can result in a considerable reduction in RFI along with a net gain in talk power.

Some experimenting has been done along these lines in Europe where the clipping has been taken to the extreme of being infinite - a block diagram of the system developed by PAØKT is shown in fig. 2. ${ }^{3}$ Although all the audio components are at the same level, the signal is still quite readable. This may seem like a drastic approach, but in difficult interference problems where unsympathetic licensing authorities are involved, it has solved the problem.

> Harry Leeming, G3LLL Holdings Audio Center Blackburn, England
2. B. Kirkwood, ZL1BN, "Principles of Speech Processing," ham radio, February, 1975, page 28.
3. P. Hawker, G3VA, "Constant-Amplitude SSB," Radio Communicatios, November, 1974, page 762.

CONSIDERING SUBAUDIBLE TONE AGGESS??

MANY SYSTEMS THROUGHOUT THE COUNTRY ARE USING SUBAUDIBLE TONE FOR INPUT AND CONTROL ACCESSING. IF YOU ARE ONE OF THIS GROUP OR ABOUT TO BE, YOU SHOULD SEE "THE FM PEOPLE" FOR ALL YOUR ACCESS NEEDS.

REEDS \$4.00 ea.

If you were to buy them new you might have to spend a small fortune. We have a good selection of used Motorola TU217, "large gold" sender reeds. If you are considering adding tone here's your chance to save some bucks. Choose from the frequencies as we have an ample stock. Other tones also available in limited quantity. (frequencies listed in HzPS)
$\begin{array}{lllllll}107.2 & 114.8 & 127.3 & 136.5 & 146.2 & 156.7 & 167.9\end{array}$

ENCODERS \& DECODERS

Subaudible tone equipment is easy to add to present radios. We stock the proven Communi cations Specialists line of encoding and decoding boards. Take your pick, and in a short time convert your rigs to subaudible access capability.

STD ENCODE \& DECODE
For use with "large gold" Motorola reeds \& others. Decoder utilizes relay output. Size $11 / 2^{\prime \prime} \times 4^{\prime \prime} \times 3 / 4^{\prime \prime}$. (less reeds) Encoder Kit Encode Wired Decode Wired

MINIATURE

For use with small reeds such as Motorola K1000 or TLN6709. Size enc $2 \frac{1}{2}{ }^{\prime \prime} x$ $3 / 4^{\prime \prime} \times 11^{1 / 2 \prime \prime}$ decode $3^{1 / 2} 8^{\prime \prime} \times$ $1^{\prime \prime} \times 11 / 2^{\prime \prime}$. (less reed)

SUB MINIATURE

NEW ME3 reedless encode. Stable and reliable. Size prox. . 29 cu . in. Fits in most any radio.
$\$ 29.95$ with reed
Decode wired 24.95 with reed $\quad \mathbf{3 8 . 4 5}$

TEST EQUIPMENT

In checking our inventory we find that we have the following items. Condition varies from unchecked to working.
Beckman 7350A Universal Eput \& Timer w/manual $\$ 150.00$
Beckman 5580 Reference Generator 100.00

Beckman 7570 amp with 7571 \& 7572 convertor to $220 \mathrm{MHz} \ldots \ldots100 .00$
Beckman 7160 EPUT meter .. 100.00
Beckman 7570 amp with 7571, 7572 \& 7573 convertors to 1000 MHz 150.00

Doolittle FD12 Freq \& Deviation meter .. 75.00
Dumont 304A Scope 50.00

Gen Radio 1001A Standard Signal Gen. ... 275.00
Hew Packard 400AB, VTVM ... 40.00
Hew Packard 400C, VTVM, recent cal. .. 80.00
Marconi TF934 FM Deviation meter .. 75.00
Measurements 111 Crystal calibrator .. 20.00
Measurements 115 Amplitude modulator .. 50.00

SEE YOU AT SAROC WITH LOTS OF GOODIES

TERMS OF SALE: Sales to licensed Radio Amateurs for use on Amateur freqs only. All prices FOB Oak Park, IL. Check with order, COD or you can charge to your BankAmericard or Master Charge.
STORE HOURS: Mon.Thurs. 9:30-6:00, Fri. 9:30-8:00. Sat. 9:30-3:00. Closed Sun. \& Holidays INQUIRIES WITHOUT ZIP CODE OR CALL . . . NO ANSWER
WANTED: Good used FM \& test equipment. No quantity too large or small. Finders fees too.

SPECTRONICS INC.
1009 GARFIELD STREET OAK PARK, ILL. 60304 (312) 848-6778

TELEX: 72:8310

ALRIGHT VHF' ${ }^{\text {ens }}$ YOU'VE HAD PROMISES FROM OTHERS NOW KLM DELIVERS! EXCLUSIVELY in THE U.S.A.

CW/SSB TRANSCEIVER

$$
-P L U S
$$

BE A WINNER - COMPLETE YOUR STATION WITH:
VHF \& UHF ANTENNAS:
8 , $11 \mathrm{EL} .50-52 \mathrm{MHz} \quad 14 \mathrm{EL} .219-226 \mathrm{MHz}$
12. 14 \& $16 \mathrm{EL} .144-148 \mathrm{MHz} 16 \mathrm{EL}$. 'LONG BOOM' $430-434 \mathrm{MHz}$

VHF \& UHF AMPLIFIERS:

> 40, 70 \& 140 WATT $2 \mathrm{MTR} \mathrm{FM} / \mathrm{CW}$
> 70,140 WATT 2 MTR SSB/FM/CW 40,70 WATT $432 \mathrm{MHz} \mathrm{FM/CW}$

HF ANTENNAS:

> 20, 15 MTR "BIG STICKS"
> $13-30 \mathrm{MHz}$ LOG TRI-BAND

KLM
CALL OR WRITE YOUR NEAREST DEALER OR:

ELECTRRONICS 17025 LAUREL RD., MORGAN HILL, CA. 95037
"NEW LOCATION"
PHONE (408) 779.7363
vhf/uhf directional rf power meter

The new Rohde \& Schwarz directional rf power meter, type NAUS-80, provides simultaneous measurement of incident and reflected power over the frequency range from 25 to 1000 MHz without any switching or changing measuring heads. The indication accuracy of the power meter is within 4% of the reading and $\pm 1 \%$ of full scale - this is a vast improvement over the accuracy of most rf power meters which is usually specified only as a percentage of full-scale deflection. Although the NAUS-80 power meter is designed for operation over the range from 25 to 525 MHz , it is usable to 1000 MHz . If desired, the factory can calibrate the instrument to 1500 MHz at slight additional charge. Power ranges are 3.2, 10, 32,100 and 320 watts full scale.

The NAUS-80 rf power meter consists of two units: the measuring head, and the indicating unit. The measuring head contains a symmetrical directional coupler which measures both incident and reflected power. Networks within the measuring head compensate for the voltage coupled out, which rises with frequency. The coupling attenuation and voltage division in the directional coupler are adjusted so that the rf rectifying diodes operate only in the squarelaw region. This permits the use of easy-to-read, linear meter scales.

The small rectified voltage ($10 \mu \mathrm{~V}$ to 25 mV) from the directional coupler is amplified in a chopper amplifier which converts the dc input voltage to a square wave which is boosted 50 dB in a seriesconnected amplifier. The amplified signal is then applied to an attenuator which is ganged with another attenuator in the feedback path. In the 3.2 watt position attenuation is 0 dB , increasing 10 dB with each measurement range. Since the attenuation in the feedback path is reduced simultaneously in corresponding amounts to the main attenuator, the loop gain of the chopper amplifier is the same on all measurement ranges so the meter indications are free of oscillation and transient response remains constant.

The attenuator is followed by the final amplifier where the signal is boosted by another 50 dB and then fed to a synchronous detector. The transistors in the synchronous detector are driven together with the same squarewave generator which- drives the chopper amplifier. The synchronous detector operates into a charging capacitor; a series resistor is included to form a lowpass filter with a low cutoff frequency. The voltage at the output of the lowpass filter (approximately 300 mV on all measurement ranges for full-scale deflection) is connected to the panel meter.

The feedback voltage to the chopper amplifier is fed back through a thermistor which compensates for the slight

SPEC COMM 512/560

temperature effect on the rf rectifying diode in the directional coupler. Temperature effect on the meter indication is less than 0.25% (referenced to indication at $25^{\circ} \mathrm{C}$).

Although the directivity of the directional coupler is 30 dB or more above 30 MHz , finite reflected power would be indicated when working with matched terminations. The designers compensated for this effect by connecting the inverting output of one channel to the non-inverting input of the other channel through resistors. The rectified voltage of the incident power being measured in channel A is attenuated such that the voltage available at the inverting input of the channel B chopper (reverse power channel) is virtually the same as the voltage present at the noninverting input which develops because of the finite directivity of the directional coupler. The two voltages balance out and, as a result, there is no indication on the reflected power meter. The effect is the same as if the measurement were made with a match-terminated directional coupler with infinite directivity.

Our staff had an opportunity to evaluate the NAUS-80 recently, and it proved invaluable in setting up the tuned input circuit of a high-power twometer linear for minimum vswr, and measuring drive power. Its high reflected power sensitivity and panel meters for both incident and reflected power are especially helpful in quickly evaluating the effect of circuit adjustments. Since the instrument is completely portable, it can also be taken to the top of your tower for precise antenna checks.

The Rohde \& Schwarz NAUS-80 rf power meter is available for 50,60 or 75 ohms. Various types of connectors are available including type N, BNC and UHF, and may be changed in the field. The built-in power supply uses five 1.5 -volt D-size dry cells with an estimated operating life greater than 7000 hours (total power drain is 1 mA or less,

The New 5 Wt. 2M FM Portables with "Snap Pack" Modules

Now you'll have three systems in one, thanks to our plug-in "Snap Pack" Modules. They provide versatile, yet optimum, performance, whether Portable, Mobile, or Fixed. Team these up with the 512 or the 560 and you're ready for action!

- 5X THE POWER of the usual 1 Wt . portables! But draws only $2 X$ the current While BP-1 Battery Pack provides $3 X$ the capacity of the usual portable or HT batteries - for 8 hrs. typ. operation per charge.
- Exclusive HOT CARRIER DIODE MIXER provides intermod \& overload per formance never before available to the Amateur - and only SPEC COMM has it!
- Uses a level of IC Sophistication unheard-of in amateur equipment - for superior, more reliable performance!

Inquire about our RPTR. RCVR. \& XMTR. Boards, Available from Dealers soon - or Factory Direct. DEALER AND CLUB INQUIRIES INVITED! See Review Article in April 73 Mag. Send for Data Sheet.

SC512 (5 Wt. 12 channels) $\mathbf{\$ 2 4 9 . 9 5}$
SC560 (5 Wt.. 6 channels) $\mathbf{\$ 2 2 4 . 9 5}$
MOBILE MOUNT-MB-1 $\$ 8.50$
"SNAP PACKS":
Portable-BP-1 (Ni-Cad Batt., Charger, Ant., carrying strap)................\$89.95
Mobile-BA-1 (25 Wt. Amplifier)\$84.95
Base-AC-1 (AC Supply)............. $\$ 49.95$

ADD \$3.50 SHIPPING/HANDLING PA. RES. ADD 6\% TAX

SPECTRUM COMMUNICATIONS
BOX 140HR, WORCESTER PA 19490 (215) 584-6469

The design, craftsmanship and technical excellence of Telrex -

Communication Antennas.
have made them the standard of comparison throughout the world! Every Telrex antenna model is engineered, precision machined, tuned and matched, then calibrated for easy and correct assembly at your site for repetition of our specifications without 'cut and try' and endless experimentation.

"the-performance-line" with a "MATERIAL" difference!

Also: Rotator-Selsyn-Indicator Systems, Inverted-V-Kits,
"Baluns," Towers, "Bertha" Masts, 12-Conductor Control Cable and $\mathrm{Co}-\mathrm{ax}$.

ASBURY PARK, NEW JERSEY 07712, U.S.A.
depending upon the measurement range). The vswr of the measuring head is 1.03 or less, and insertion loss up to 300 MHz is 0.1 dB or less $(0.25 \mathrm{~dB}$ or less to 525 MHz). The instrument is covered by a five-year warranty.

Also available from Rohde and Schwarz is the type NAN highfrequency wattmeter and matching indicator which provides direct power and reflection coefficient measurements over the high-frequency range. Accuracy is within 5\% of full scale and frequency response is flat within 3% over the range from 1.5 to 30 MHz . The instrument is available with a characteristic impedance of 50,60 or 75 ohms. Reflection due to the coupling system is less than 2%. The instrument has four selectable power scales up to a maximum of 1200 watts.

For more information on the NAUS or NAN rf power meters, write to Rohde \& Schwartz Sales Company, 14 Gloria Lane, Fairfield, New Jersey 07006 or use check-off on page 126.

two-meter fm transceiver

The Horizon 2 is a new, 12-channel, 25 -watt two-meter radio developed by Standard Communications Corporation. This rig is an outgrowth of Standard Communications' land/mobile and maritime equipments, which must meet rigid FCC type acceptance requirements for the transmitter section. The receiver section meets the proposed maritime FCC receiver specifications as well as the current receiver DOC type acceptance requirements for use in Canada.

Some of the features of the Horizon 2 include 25 watts nominal output; 23 watts minimum. The unit is capable of using 12 channels; three are included: $94 / 94,52 / 52$, and $16 / 76$. Crystal net capacitors are included for both transmit and receive. The receiver front end has a selective ceramic filter that provides -65 dB minimum selectivity.

Plenty of audio power is available more than 3 watts - perfect for the noisiest mobile installation. The rig is center tuned to 146.94 MHz and will operate on the low and high ends of CAP and MARS frequencies.

The Horizon-2 amateur net price is $\$ 225.00$, which includes the three channels mentioned above. For other channel options and more data, write Standard Communications Corporation, P.O. Box 92151, Los Angeles, California 90009, or use check-off on page 126.

250-MHz frequency counter

The K-Enterprises model 4X6 sixdigit frequency counter covers the frequency range from 500 kHz to 250 MHz with sensitivity of 80 mV or less at 150 MHz . The input impedance of the counter is 50 ohms and maximum input voltage is 15 Vrms or 50 Vdc . The time base uses a crystal clock with an accuracy of 10 ppm over the temperature range from zero to $+40^{\circ} \mathrm{C}$. The model 4X6, which contains a built-in power supply for operation from 117 Vac , is priced at $\$ 250$. The model 4X6C, which includes a temperature compensated crystal oscillator with 0.0005% accuracy from -30° to $+60^{\circ} \mathrm{C}$, is priced at $\$ 270$. Add $\$ 2.50$ to cover postage and insurance.

For more information on the KEnterprises $250-\mathrm{MHz}$ frequency counters, write to them at 1401 East Highland, Shawnee, Oklahoma 74801, or use check-off on page 126.

fm power amplifier

Specialty Communications Systems has introduced a new Porta-Pack 25 watt power amplifier system with a self-contained battery pack which can be carried over your shoulder. Designed for use with the popular H-T fm trans-

THE BEST WAY TO MONITOR RADIO CHANNELS WITHOUT LISTENING

TOUCH-TONE ${ }^{\circledR}$ DECODER $\$ 75.00$

LOWEST PRICE EVER OFFERED
 FOR A QUALITY TOUCH-TONE DECODER

MAYNARD ELECTRONICS recently purchased the entire stock of discontinued models of PLL TOUCH-TONE DECODERS from a major commercial manufacturer. Our agreement stipulates that the sale of these units will be limited to the amateur radio market. Because the sale price is below the manufacturer's cost, it is necessary to limit sales to five units per ham to prevent commercial speculation.

FEATURES:

- Virtually immune to falsing by voice, CTCSS tones, music and noise
- Includes a CALL LIGHT and BUZZER
- Output for vehicle HORN connection
- Relay UNMUTES SPEAKER when call is received
- Field programmable for UP TO EIGHT DIGIT code sequence
- May be used for MOBILE or FIXED
- Designed for 12 VOLTS DC Pos. or Neg. operation
- Dimensions: $11 / 4 \times 43 / 4 \times 515 / 16$ inches

Units are brand new. Complete satisfaction is guaranteed. If for any reason you are not completely satisfied, just return the undamaged unit within ten days for refund.
MODEL 2000B TOUCH-TONE DECODER AND MANUAL ..
MATING CABLE. MULTI-CONDUCTOR CABLE WITH MOLEX CONNECTOR CABLE
$\$ 10.00$

Please enclose check or money order for the total amount plus $\$ 5.00$ for shipping and handling. A $\$ 10.00$ deposit is required on C.O.D. shipments. F.O.B. Belmont.
Include your name, shipping address, zip code and ham call sign. Calif. residents add sales tax.

MAYNARD ELECTRONICS COMPANY

P. O. Box 363, Dept. A
Belmont, Ca. 94002
Phone (415) 592-1553

Touch-Tone is a reg. T.M. of AT\&T Co.

LOW COST DIGITAL KITS

 NEW BIPOLAR MULIIMETER: automatic polarity indication

Displays Ohms, Volts or Amps in 5 ranges * Voltage from 100 Microvolts to 500 V . Resistance from 100 Milliohms to 1 Megohm * Current from 100 Nano Amps to 1 Amp . $\$ 80.00$ Case included. (Optional probe $\mathbf{\$ 5 . 0 0}$).

40 MHz DIGITAL FREQUENCY COUNTER:

- Will not be damaged by high power transmission levels.
- Simple, 1 cable connection to transmitter's output.

ES 220 K - Line frequency time base.
1 KHz resolution ... 5 digit: $\$ 79.50$. Case extra: $\$ 10.00$ ES 221 K - Crystal time base.

100 Hz resolution . . 6 digit: $\$ 109.50$. Case extra: $\$ 10.00$

DIGITAL CLOCK:

ES $112 \mathrm{~K} / 124 \mathrm{~K}$ - 12 hour or 24 hour clock: $\$ 46.95$. Case extra: Metal $\$ 7.50$

CRYSTAL TIME BASE:

ES 201 K - Opt. addition to ES $112 \mathrm{~K}, 124 \mathrm{~K}$ or 500 K Mounts on board. Accurate to $.002 \% \ldots$... $\$ 25.00$

I.D. REMINDER:

ES 200 K - Reminds operator that 9 minutes and 45 seconds have passed. Mounts on ES 112 or 124 board. Silent LED flash: $\$ 10.95$. Optional audio alarm $\$ 4$ extra.

[^8]
ORDER YOURS TODAY:

Use your Mastercharge or
Bankamericard
Money Back Guarantee

[^9]ceiver, the amplifier can also be used with other similar hand-held fm transceivers, and covers the complete twometer band without retuning. The battery pack provides 45 minutes of "talk" time and can be recharged in four hours. Included with the $\$ 199.95$ package price are the 25 -watt power amplifier, 12 -volt Gates cell energy source, external constant-voltage charger, flexible antenna and a leather case with belt loop and shoulder strap. For more information, write to Louis Anciaux, WB6NMT, Specialty Communications Systems, 4519 Narragansett Avenue, San Diego, California 92107, or use check-off on page 126.

radio-sentry mini-meter

Mini-Meter, a new amateur fm transmitter monitor, has been introduced by Electronic Specialists. The transmitter field strength is continuously monitored, with the status displayed on a miniature meter. Ultra compact, MiniMeter operates without batteries or wires and can be carried in your pocket for on-the-spot transmitter checks. Deteriorating performance can be spotted early, allowing timely maintenance. The unit is supplied with a convenient, detachable mounting arrangement. State frequency. $\$ 27.95$ postpaid from Electronic Specialists, Box 122, Natick, Massachusetts 01760.

ON THE COMPETITION

The Clegg FM-DX has many advantages over competitive 2-meter transceivers. Here's seven reasons why you shoulc look to Clegg's FM-DX before you invest in any FM rig.

1. FULL 2 -meter coverage from 143.5 to 148.5 . . . includes most MARS frequencies.
2. CLEAN, beautiful 35 -watts transmitter output . . . enough for good simplex range when you want to escape the repeater crowd.
3. SIMPLICITY of operation . . . stability and accuracy of the Clegg synthesizer.
4. RUGGED modular construction . . . will outlast most of the lesser quality radios in today's marketplace.
5. UNPRECEDENTED IMMUNITY
from intermod . . . thanks to a super single-conversion receiver. Forget about those police, taxi cab, and other spurious response problems you may have encountered in the past.
6. PRECISE large LED frequency readout . . . just like having a frequency counter.
7. ACCEPTANCE . . . tells the gang that you own the very best in a dependable American-made transceiver.
For complete Info, Call Clegg TOLL FREE now... (800) 233-0250.
In Pennsylvania, Call COLLECT (717) 299-7221.

Three new reasons why Heath is the leader in amateur radio.

New 5-Band SSB/CW
New 2-Meter Synthesized New 2-Meter Hand-Held

NEW HW-104 5-Band SSB/CW Transceiver - the latest in broadband technology at lower cost . . only 539.95
In keeping with the tradition of the famous Heathkit HW-series, the new HW-104 is the inheritor of the advanced technology of the SB104 and the high value concept of the HW-101. Completely solid-state. Frp, receiver front end to transmitter output. Cool and quiet.
Totally broadbanded. Instant QSY. Just choose the band, frequency and mode. Move anywhere in any band without preselector, load, or tune controls.
Clean transmissions. 100 watts out or 1 watt. Low harmonic and spurious radiation. At 100 watts, third order distortion is down 30 dB and carrier and unwanted sideband suppression are down 55 dB . Broadband design keeps it that way.
Clear reception. Broadband design minimizes cross-modulation and intermodulation so signals stand-out from a quiet background. Active devices are minimized ahead of the 4 -pole crystal filter. Adjacent signal overload is minimized yet sensitivity is less than $1 \mu \mathrm{~V}$. Convenient 15 MHz WWV receive position on the band switch with a "pull-to-calibrate" position on the RF gain control.
Easy-to-read circular dial. Covers from 3.5 MHz to 29.0 MHz . The dial spinner covers about 15 MHz per turn. Built-in 100 kHz and 25 kHz calibrator insures accuracy with 2 kHz (dial markings are 5 kHz). Backlash less than 50 kHz . The VFO is the same basic circuitry as in the SB104 with less than $100 \mathrm{~Hz} /$ hour drift after warmup. To cover the top end of the 10 -meter band, order the HWA-104-1 accessory.
Easy to build and align. Phenolic plug-in circuit boards and 2 wiring harnesses. Aligns with just a dummy load, mic. and VTVM.
Super operating, super value. You get both in the HW-104.
Kit HW-104, 31 lbs., mailable 539.95

Kit HP-1144 AC power supply, 28 Ibs. . 89.95
Kit HS-1661 Matching speaker, 5 Ibs. . . . 19.95
Kit HWA-104-1, Ten-meter accessory,
1 lb .
16.95

SBA-104-1, Noise blanker, 1 lb. 26.95
SBA-104-2, Mobile mount, 6 lbs. 36.95
SBA-104-3, 400 Hz CW crystal filter, 1 lb .39 .95

NEW HW-2026 gets you on 2 with synthesis for $\mathbf{5 0 \%}$ less... only 289.95

True digital frequency synthesizer. No crystals to buy, no channel limitations. Digital technology with a voltage controlled oscillator and crystal time base whose outputs are divided down and phase-detector compared. You control the divisor and therefore the frequency from the front panel lever switches.
Lever-switched channel selection with digital readout. Just flip the levers to any frequency in any 2 MHz segment of 144 to 147.995 MHz . 5 MHz steps open all channels to you.
Automatic repeater offset plus built-in tone encoder. Burst and continuous. Simplex or offset. 10 watts minimum output; infinite VSWR without failure. True FM for great audio, too.
Hot receiver; $0.5 \mu \mathrm{~V}$ sensitivity; dual conversion; 8-pole crystal filter; linear audio; built-in speaker. Best value going in synthesized 2-M. Kit HW-2026, 12 lbs., mailable 289.95

Kit HWA-202-1, AC supply, 7 lbs.
32.95

NEW HW-2021 2-M 1-watt Hand-Held with 5 receive \& 10 transmit channel capability, batteries \& charger for only 169.95

One crystal does the work of two - gives both receive and transmit frequencies. Works offset, too, so each crystal gets you one receive and two transmit channels. Buy just four crystals (not pairs); we include 146.94 MHz and -600 kHz to get you started.
One watt minimum output - 0.005% stability. And frequency modulation plus built-in separate mic. for better audio.
Optional "Auto-Patch" Encoder accesses landlines through repeaters with touch-tone input. 12 digit keyboard \& circuit board fits HW-2021. Built-in Battery Saver, rechargeable Battery Pack \& Battery Charger - all included.
Compact, rugged. High-impact, black plastic case; glass epoxy circuit board; wt. 2 lbs. w. batteries. Not recommended for beginner kit builders due to compactness.
It's the best value in go-anywhere 2-M rigs.
Kit HW-2021, 5 lbs. mailable 169.95
Kit HWA-2021-2, carrying case, $1 \mathrm{lb} . \ldots . .12 .95$
Kit HWA-2021-3, Auto-patch, 2 lbs. 39.95

See them in the FREE Heathkit Catalog

HEATHKIT ELECTRONIC CENTERS -
Units of Schlumberger Products Corporation Retail prices slightly higher.
ARIZ.: Phoenix; CALIF.: Anaheim, El Cerrito, Los AngeIes, Pomona, Redwood City, San Diego (La Mesa). Woodland Hills; COLO.: Denver; CONN.: Hartiord (Avon); FLA.: Miami (Hialeah), Tampa; GA.: Atlanta; ILL.: Chicago, Downers Grove: IND.: Indianapolis; KANSAS: Kansas City (Mission); KY.: Louisville; LA.: New Orleans (Kenner); MD.: Baltimore, Rockville; MASS.: Boston (Wellesley), Boston (Peabody): MICH.: Detroit; MINN.: Minneapolis (Hopkins); MO.: St. Louis (Bridgeton); NEB.: Omaha; N.J.: Fair Lawn; N.Y.: Buffalo (Amherst), New York City, Jericho (L.I.), Rochester, White Plains; OHIO: Cincinnati (Woodlawn), Cleveland, Columbus, Toledo; PA.: Philadelphia, Pittsburgh; R.I.: Providence (Warwick): TEXAS: Dallas. Houston; VA.: Norfolk (Va. Beach); WASH.: Seattle; WIS.: Milwaukee.

This New Unit meets the best spec of all: It: Low Price! The GTX-1 is NOT a "cheap" import It IS identical to Genave's Land Mobile and Aircraft units for high quality and reliability. Com pare performance to Motorola, GE, RCA or anj other hand-helds that sell for $\$ 700$ or more . .

NOW CHECK THESE FEATURES:

- All Metal Case
- American Made
- Accepts standard plug-in crystals
- Features 10.7 MHz crystal filter
- Trimmer caps on TX and RX crystals
- 2.5 watts output
- Battery holder accepts AA regular, alkaline or nicad cells
- Mini Handheld measures $8^{\prime \prime}$ high $\times 2.625^{\prime \prime}$ wide x 1.281" deep
- Rubber ducky antenna, Wrist safety-carrying-strap included
- 6 Channels
- Factory-direct to You

Accessories Available:

- Nicad Battery Pack
- Charger for GTX-1 battery pack
- Leather carrying case
- TE III Tone Encoder for auto patch

GTX-1

2 Meter 6 channel Hand-Held (without encoder)
s27995
(Reg. \$299.95)

GTX-1T
with Built-In Tone Encoder ${ }^{5} 329{ }^{95}$
(Reg. \$349.95)

ORDER NOW FOR BEFORE-CHRISTMAS DELIVERY

Use This Handy Order Form

USUAL IMMEDIATE SERVICE

 ON ALL OTHER GENAVE FACTORY-TO-YOU EQUIPMENT
THIS PĀGE IS YOUR ORDER BLĀNK! ORDER NOW AND SAVE! Specials at Unbeatable Prices

GENAVE, 4141 Kingman Dr., Indianapolis, IN 46226 (317+546-1111)
HEY, GENAVE! Thanks for the nice prices! Please send me:

PSI-11 Battery Pack (with charger)
ARX-2 2-M Base Antenna
Lambda/4 2-M Trunk Antenna
TE-I Tone Encoder Pad TE-II Tone Encoder Pad PSI-9 Port. Power Package (less batteries) PS-1 AC Power Supply
and the following standard crystals @ \$4.50 each:
\$
Non-standard crystals @ \$6.50 each:
\$
(allow 8 weeks delivery.)
For factory crystal installation add $\$ 8.50$ per transceiver.
IN residents add 4% sales tax:
CA residents add 6\% sales tax:
All orders shipped post-paid within continental U.S.
NAME \qquad PHONE AMATEUR CALL

ADDRESS \qquad CITY \qquad STATE \& ZIP
Payment by:
\square Certified Check/Money Order Personal Check C.O.D. Include Note: Orders accompanied by personal checks will require about two weeks to process. 20\% Down.
$\square \mathbf{2 0 \%}$ Down Payment Enclosed. Charge Balance To:
\square BankAmericard \# \qquad Expires
\square Master Charge \# \qquad Expires Interbank \#

OVilson Elechionics Corp. FACTORY DIRECT CHRISTMAS SUPER SPECIAL

1405 SM

FEATURES

- 6 Channel Operation
- Individual Trimmers on all TX/RX Crystals
- All Crystals Plug In
- 12 KHz Ceramic Filter
- 10.7 and 455 KC IF
-. 3 Microvolt Sensitivity for 20 dB Quieting
- Weight: 1 lb .14 oz . less Battery
- Battery Indicator
- Size: $87 / 8 \times 1$ 3/4 $\times 27 / 8$
- Switchable 1 \& 5 Watts Minimum Output © 12 VDC
- Current Drain: RX 14 MA TX 400 MA (Iw) 900 MA (5W)
- Microswitch Mike Button
- Unbreakable Lexan © Case

1402 SM

- 6 Channel Operation
- Individual Trimmers un all TX/RX Crystals
- All Crystals Plug In.
- 12 KHz Ceramic Filter
- $\mathbf{1 0 . 7} \mathrm{IF}$ and 455 KC IF
-. 3 Microvolt
- Sensitivity for 20 dB Quieting
- Weight: 1 lb .14 oz. less Battery
- S-Meter/Battery Indicator
- Size: $87 / 8 \times 17 / 8$ $\times 27 / 8$
- 2.5 Watts Minimum Output © 12 VDC
- Current Drain RX 14 MA TX 500 MA
- Microswitch Mike Button

OVER 1,000 UNITS IN STOCK FOR CHRISTMAS SPECIAL ORDER EARLY TO INSURE DELIVERY BY CHRISTMAS

ACCESSORY SPECIALS

ACCESSORY SPECIAL

VALID ONLY WITH RADIO PURCHASE

BC-1 NI-CAD BATTERY CHARGER

TO: WILSON ELECTRONICS CORP., 4288 S. POLARIS AVE., LAS VEGAS, NEVADA 89103 (702) 739-1931

CHRISTMAS SUPER SALE ORDER BLANK

\qquad 1402 SM @ \$164.95. \qquad 1405 SM @ \$239.95. \qquad FACTORY XTALS INSTALLED @ \$7.50.
\qquad BC1 @ \$29.95. \qquad BP @ \$10.95. \qquad LC1 @ \$8.50. \qquad LC2 @ \$8.50. SM2 @ \$24.95. \qquad TE1 @ \$34.95 SPECIFY FREQUENCY \qquad)
\qquad TTP @ \$44.95. \qquad XF1 @ \$8.95. \qquad TX XTALS @ \$3.00 ea. RX XTALS @ \$3.00 ea. EQUIP TRANSCEIVER AS FOLLOWS: XTALS A. \qquad B. C C. \qquad D. \qquad E. \qquad F.

ENCLOSED IS \qquad \square CHECK \square MONEY ORDER $\square M C \quad \square B A C$

CARD \# \qquad EXPIRATION DATE \qquad
XTALS \qquad
\qquad
\qquad ADDRESS \qquad
NAME \qquad
CITY STATE \qquad ZIP

SIGNATURE
\qquad
SHIPPING AND HANDLING PREPAID FOR CHRISTMAS SPECIAL
SALE ENDS DECEMBER 31, 1975
NEVADA RESIDENTS ADD SALES TAX

CRYSTAL FILTERS

$127 / 64^{\prime \prime} \times 13 / 64^{\prime \prime} \times 3 / 4^{\prime \prime}$
10.7 MHz FILTERS

XF107.A	14 kHz	NBFM	$\$ 40.60$
XF107.B	16 kHz	NBFM	$\$ 40.60$
XF107.C	32 kHz	WBFM	$\$ 40.60$
XF107-D	38 kHz	WBFM	$\$ 40.60$
XF107.E	42 kHz	WBFM	$\$ 40.60$

CRYSTAL SOCKET (for XM107-SO4) type DG1
Shipping 50e each

and DISCRIMINATORS

$146 \longleftrightarrow 440$ TRANSVERTER

We are pleased to announce the introduction of our $146 \mathrm{MHz} / 440 \mathrm{MHz}$ TRANSVERTER, model QMt440. This "add-on" module will complement your existing 2 meter FM transceiver, enabling the latter to be used on the new 440 MHz repeater sub-band.
The QMt440 operates automatically in both transmit and receive modes. A front panel switch, and coaxial connector for the 2 meter antenna, permit normal operation of your 2 meter transceiver on 146 MHz when desired.

Write for full details.
Power supply: 12 volt D.C.
Construction: Glass-epoxy board in aluminum box.
Size: $4^{\prime \prime} \times 11 / 4^{\prime \prime} \times 7^{\prime \prime}$.

SPECTRUM
INTERNATIONAL
Broad band design, NO tuning required. BOX 1084 CONCORD MASSACHUSETTS 01742
U. S. A.

500 MHZ SCALER MODULE

ONLY $1.55 \times 1.65 \times .4$ INCHES
FITS RIGHT INTO EXISTING EQUIPMENT HIGH SENSITIVITY: 35 mv . at 500 mhz . 15 mV . AT 150 mHz .

INPUT IMPEDANCE: 50 OHMS
REQUIRES 12 to 15 vDC at 100 ma , max.
ITL compatible output $\mathrm{F}_{\text {IN }} / 10$
OVERLOAD PROTECTED
PS-M Prescaler Module wired \& tested
$\$ 99.00$ plus $\$.85$ shipping
calif. residents add 61 sales tax
hrite for data on entire line of prescalers

- Eq4 ASE日EPAqES
P.O. B0X 961 TEMPLE CITY, CA. 91780

Synthesizer-fors/ binaural reception

Hildreth Engineering

Drilled PC board with instructions- \$6.95 ppd

Assembled and tested PC board Model 400-\$17.95

PC boards include extra circuitry for trimming
\& exalted cross-over
Brochures -
P.O. Box 3

Sunnyvale Cal. 94088

- STABILITY
- HIGH QUALITY
- QUICK DELIVERY

Write or Call
R/T Labs., inc.
4126 COLERAIN AVE., CINCINNATI, OHIO 45223 513/681-3444

EW NEW NEW!! TOUCH TONE ENCODERS

SOLID STATE CRYSTAL CONTROL TONE ENCODERS

- 12 or 16 Touch Tone digits
- Ideal for hand held units
- Choice of 4 keyboard styles
- RF proof
- Temperature, -20° to $150^{\circ} \mathrm{F}$
- CMOS IC Encoder
$1[2$
456
788
Style A

Style B

- Bell System Compatibility
- Easy Installation
- Sub-miniature size
- Crystal Controlled
- Single Tone capability
- Low cost

Style C

Style D

SELF-CONTAINED KEYBOARD ENCODERS

Complete 12 or 16 digit Touch Tone keyboard encoders for mounting directly to side of handheld transceivers. All electronics included WITHIN keyboard, nothing to add inside of transceiver. Only $1 / 4^{\prime \prime}$ thick. Ready for easy installation, just add three connections to unit. RF proof. Select keyboard style when ordering.
DTM
$\$ 49.50$

SUB-MINIATURE TOUCH TONE ENCODER AND KEYBOARD

Touch-Tone encoder for mounting INSIDE hand-held transceiver, keyboard mounts on side of transceiver. P.C. board only $0.8^{\prime \prime} \times 1.2^{\prime \prime}$. RF proofed. Assembled and ready for easy installation. Select keyboard style when ordering.
SME
$\$ 29.50$

DO IT YOURSELF ENCODERS

Now, buy all the major parts - "ala-carte" and build your own Touch Tone Encoder. All you need is a Keyboard, Digital Touch Tone Encoder, a $1-\mathrm{MHz}$ crystal, and P.C. board. Parts come with complete set of application notes, schematics and instructions.
Keyboard, your choice of keyboard style .. $\mathbf{\$ 8 . 5 0}$
$\left.\begin{array}{ll}\text { Digital T. T. Encoder with } 1-M H z ~ H C-6 ~ C r y s t a l ~ \\ \text { Digital T. T. Encoder with } 1-M H z ~ S l i m ~ H C-6 ~ C r y s t a l ~ & \ldots\end{array}\right)$
P.C. board $0.8^{\prime \prime} \times 1.2^{\prime \prime}$ $\$ 2.50$
All resistors, capacitors, and P.C. board (With purchase of keyboard, encoder and crystal)

AUTOMATIC TOUCH TONE DIALER

Automatic mobile telephone dialing is now available. By the push of a single button you can automatically dial up to six separate 7 -digit numbers. All solid-state micro-power COSMOS design. Automatic PTT operation. Programmable to send telephone number only, access code plus telephone number or telephone number plus an identification number. Low profile dash mount, easy installation. Compatible with most radio equipment. Available with keyboard for manual dialing of numbers. Manual operation provides automatic PTT operation with $11 / 2$ second transmitter hold.
AD-6
Without keyboard
99.50

AMD-6
With keyboard
119.50

Factory programming of numbers $\$ 7.50$.
ORDER TODAY - SEND FOR FREE NEW CATALOG
DATA SIGNAL, INC.
2212 PALMYRA ROAD, ALBANY, GA. 31701 912-435-1764

TOUCH TONE TO DIAL PULSE CONVERTER

Convert standard 0.9 touch tone digits to Bell System compatible dial pulse code. Completely solid state. Includes state-of-the-art Phased Locked Loop anti-falsing touch tone decoder, large capacity 64 -digit memory and solid state pulsing. Starts dialing on first incoming digit. Memory will not become congested due to rapid succession of incoming digits. Cancel and redial function. - and \# digits are decoded and provided for remote control purposes. Available as p.c. board or rack mounting.
DPC-121 P.C. Board $\$ 195.00$ DPC-121R Rack Mount $\$ 285.00$

ANTI-FALSING TOUCH TONE DECODER

Now, a true anti-falsing decoder/receiver. Virtually immune to high noise or audio falsing. Twelve or 16 digit capability. Completely solid state, uses latest Phased Locked Loop decoding. Single 5 -volt power supply. Heavy duty transistor output. Available as p.c. board or 19 " rack.

TTD-126-12	12 digit	P.C. $\$ 149.95$	Rack $\$ 219.95$
TTD-126-16	16 digit	P.C. $\$ 169.95$	Rack $\$ 239.95$

REPEATER AUTO PATCH

It's complete - a single digit access/disconnect Auto Patch facility. All you need is a repeater and the phone line. Complete with automatic disconnect, dialing capability, two way audio monitor plus remote control. When used with a rotary dial exchange, Data Signal's DPC-121 dial converter is also required. P.C. board or Rack Mount available.

Rack $\$ 149.50$
Sh. Wt. 2 lbs.
Sh. Wt. 8 lbs.

FREQ. (MHz_{2})	USE	STAGES	DELUXE PREAMPLIFIERGAIN di NF dB KIT WIRED			
14, 21 or 28	HIGH FREQ	$\begin{aligned} & \text { SINGLE } \\ & \text { DOUBLE } \end{aligned}$	$\begin{aligned} & 25 \\ & 48 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \$ 10.50 \\ \$ 20.50 \\ \hline \end{array}$	$\begin{array}{r} \$ 13.50 \\ \$ 26.50 \\ \hline \end{array}$
28 to 30	$\begin{aligned} & \text { OSCAR } \\ & \text { SPECIAL } \end{aligned}$	$\begin{aligned} & \text { SINGLE } \\ & \text { DOUBLE } \end{aligned}$	$\begin{aligned} & 25 \\ & 48 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{array}{\|l\|} \$ 12.50 \\ \$ 24.50 \\ \hline \end{array}$	$\begin{aligned} & \$ 15.50 \\ & \$ 30.50 \\ & \hline \end{aligned}$
50 to 54	6 METER	$\begin{aligned} & \text { SINGLE } \\ & \text { DOUBLE } \end{aligned}$	$\begin{aligned} & 25 \\ & 48 \end{aligned}$	2	$\begin{array}{\|l\|} \$ 10.50 \\ \$ 20.50 \\ \hline \end{array}$	$\begin{aligned} & \$ 13.50 \\ & \$ 26.50 \\ & \hline \end{aligned}$
108 to 144	VHF AIRCRAFT	$\begin{aligned} & \text { SINGLE } \\ & \text { DOUELE } \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 5.9 .50 \\ 518.50 \\ \hline \end{array}$	$\begin{aligned} & \$ 12.50 \\ & \$ 24.50 \\ & \hline \end{aligned}$
135 to 139	SATELLITE	SINGLE DOUBLE	$\begin{aligned} & 20 \\ & 40 \\ & \hline \end{aligned}$	2.5 2.5	$\begin{array}{\|l\|} 5.9 .50 \\ 518.50 \\ \hline \end{array}$	$\begin{array}{r} \$ 12.50 \\ 524.50 \\ \hline \end{array}$
144 to 148	2 METER	SINGLE	$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 5.9 .50 \\ 518.50 \\ \hline \end{array}$	$\begin{array}{r} \$ 12.50 \\ \$ 24.50 \\ \hline \end{array}$
146 to 174	HIGH BAND	$\begin{aligned} & \text { SINGLE } \\ & \text { DOUBLE } \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 5.50 \\ 518.50 \\ \hline \end{array}$	$\begin{array}{r} \$ 12.50 \\ \$ 24.50 \\ \hline \end{array}$
220 to 225	11/4 METER	$\begin{aligned} & \text { SINGLE } \\ & \text { DOUBLE } \end{aligned}$	$\begin{aligned} & 18 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \$.90 \\ \$ 18.50 \\ \hline \end{array}$	$\begin{aligned} & \$ 12.50 \\ & 524.50 \\ & \hline \end{aligned}$
225 to 300	UHF AIRCRAFT	SINGLE DOUBLE	$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 5.9 .50 \\ 518.50 \\ \hline \end{array}$	$\begin{aligned} & \$ 12.50 \\ & \$ 24.50 \\ & \hline \end{aligned}$
1 thru 30	HF BROADBAND		19.36	3	-	\$17.95

DELUXE P.C. KEYER

In either a 5 volt TTL or a 9 volt C-MOS version this new module type IC keyer can be easily adapted to your own custom pack. age or equipment.

Versatile controls allow wide character weight variation, speeds from 5 to 50 w.p.m. plus volume and tone control.

Solid-state output switching saves power, eliminates all those annoying relay problems and is compatible with both grid block and solid-state circuitry.

With its side-tone monitor and 90 day warranty the Data Signal PC Keyer is the one for you.

TTL Keyer Wired \$19.95
Kit \$14.95
C-MOS Keyer Wired $\$ 24.95$
Kit $\$ 19.95$

DELUXE RECEIVER PREAMP

Specially made for both OLD and NEW receivers. The smallest and most powerful single and dual stage preamps available. Bring in the weakest signal with a Data Preamp.

ORDER TODAY - SEND FOR FREE NEW CATALOG
DATA SIGNAL, INC.

We've Got POWER 80 Watts for $\$ 93.00$

PRA 10/80 R.F. Amplifier $\$ 93.00$

POWER is important on any band, even 2 meters. It means that they hear you, or they don't.
Most 2 meter transceivers have 10 watts out and that's enough for local repeaters. But for hams who want more than just a few local contacts, you should hear RF POWER by PRA Industries. The PRA 10/80 amplifier will give your signal TALK POWER. It makes 10 watts a BIG 80 WATTS. That's the difference between being just one of the guys, and being the guy with the

STRONG SIGNAL. BIG SIGNALTALK POWER FOR JUST \$93.00!

Don't forget our MINI AMP I KIT will give hand held units 25 watts of talk power too!
Call our toll free number or see your
local dealer and then PUT SOME POWER IN YOUR TALK!

Call Toll Free 800-453-5717

On October 31, 1975, Buyers \& Sellers radio brokerage will publish the biggest list of used ham gear ever. A nationwide listing by manufacturer having over $\$ 250,000$ in xmtrs, xcvrs, etc. will be available free:

Like your gear to be on this list? We must re: ceive your listing by 5 pm , Oct 30 . Sellers pay 10% commission if a sale is made there's never a charge to buyers.

FOR THE LARGEST SELECTION OF USED GEAR ANYWHERE, CONTACT:

BIMERG E SELLERF
Post Otfice Bor 73
617-536-8777
Kenmore Station
Boston Mass 02713

Weekdays. 9 am 5 pm
Wed. \& Sun. 7 midn

JANUARY 24-25, 1976 (MIAMI BAYFRONT AUDITORIUM) MIAMI, FLORIDA

ADVANCE REGISTRATION \$2.00

FOR SPECIAL HOTEL RATES AND MORE INFORMATION WRITE:
DADE RADIO CLUB
P.O. Box 73, B.A.

Miami, Florida 33152

GET A 26 FUNCTION, HAND HELD SCIENTIFIC CALCULATOR FOR LESS THAN WHOLESALE

\$39.95

 AKD WE PAY POSTACE!- Full Factory Warranty
- Instrucfion Manual
*Battery
-Case
specifications and featuris matur Opmatien
Pockat Sta
Supplad With 9 Volt Ilattery
lapp Nine Digit, Eavy To Read Fluserncest Type Displey

Luppe Nine Digit

Soenticic Koy - Chames Aletwese Floatim Foint Notatios And Scientific Notatien.
SFunction, Full Accumulating Memery: M. M., MB, MC, X M
Tranucterndental Fanctions: Sies, Con, Tan Sos $9^{-1}, \mathrm{Cos}^{-1}, \mathrm{Ten}^{-1}$, Lax, v^{*}
Trig F unctians Calcelated la Raduns Or Deyen
\sqrt{x} and $1 / x$ Functian
If Key
Capetility To Calculate $\sqrt[2]{\mathrm{x}}$ ane x)
Chais Calculations
Autamatic Fower On Cleer
Tailimy Zwo Soppernien
Automatic Comitant
Aus/2si Selid Sute Circuitry For Dashility And Depentability

Weight (With Betiwy): I sunon

BULLET ELECTRONICS
0. Box 146

LAKE WORTH, FLORIDA 33460

COMPLETE WVW Millin LED CLOCK KIT

$\$ 28.75$
COMPLETE !

2 or 24 hour MODELS
Please Specify ae Order
BULLET ELECTAONICS
P. O. 80×1466

LAKE WORTH, FLORIDA
33460
Hoco. 3
CHECK OR MONEY ORDEA
DIGIT LED CLOCK KIT: bright $1 / 4$ readout $\$ 16.95$
XTAL TIMEBASE KIT: low current 60Hz . 01 5.25

STAINLESS STEEL MOUNTINC
BRACKET: adjustable
COMPLETE INSTRUCTIONS:
GUARANTEED: with diagrams money back

REPAIR AVAILABLE: 48 hr service

Value $\$ 33.65$
WE COMAANIER ALL COMOCNENTS It The MK-01 and WILL BEPLACE on

 ACE IS AVAILABLS AT 2OS of THE PUPCHASE PEICE PLES BITMES POS tace is availamle at 20 K tace.

wire to interconnect discrete components resistors, transistors, linear/digital ICs in TO5 or DIP packages (8-40 pins), and more. Plus, you get $5-15$ VDC up to 600 ma (9 watts) of variable regulated power, with a built-in $0-15 \mathrm{~V}$ voltmeter to monitor internal power and/or external circuits. Now, that's design flexibility! And look at the low, low price!

SPECIFICATIONS

Power Supply: Output: $5-15 \mathrm{~V}$ @ 600 ma . Ripple and Nolse: less than 20 mv @ full load. Load/Line regulation: <1\%. Meter: 0-15V DC. Connectors: QT-59S, 2 QT-59B, 2 power supply 5 -way binding posts, 2 meter 5 -way binding posts. Wght: 3 lbs . Power Needed: $117 \mathrm{~V}, \mathrm{AC} @ 60 \mathrm{~Hz} 12 \mathrm{~W}$.
Patent \#235,554.

Add $\$ 2.50$
shipping/handling

FUNCTION GENERATOR Troubleshooting? Design Testing? DM-2 gives you all the signal source capacity you need ...at a very modest price. This 3-wave form Function Generator has: short-proof output, variable signal amplitude and constant output impedance. Completely wired, tested. calibrated, ready to test audio amplifiers, op-amp and educational lab designs . . . as well as complex industrial lab projects. Complete with easy-to-read instructions/operations manual, application notes, operation theory and more, DM-2 works hand-in-hand with DM-1 tor total versatility.

SPECIFICATIONS

Frequency Range: $1 \mathrm{~Hz}-100 \mathrm{KHz}$ (5 ranges: $1-10 \mathrm{~Hz}$, $10-100 \mathrm{~Hz}, 100-1000 \mathrm{~Hz}, 1-10 \mathrm{KHz}, 10-100 \mathrm{KHz}$). Dial Accuracy: Calibrated @ $10 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{KHz}, 10 \mathrm{KHz}$, freq. accurate to 5% of dial setting. Wave Forms: Sine $<\mathbf{2 \%}$ THD over freq. range. Triangle wave linearity. $<2 \%$ THD over freq. range. Triangle wave lin
< 1% over range. Square wave rise/fall 0.5 Amplitude: (all wave forms) variable-0.1 $\mathrm{V}-10 \mathrm{~V}$ peak to peak into open circuit. Output Impedance: 600 N -constant over ampl./freq. ranges. Wght: 2 lbs. Power Needed: 117V, AC © 60 Hz 5 W .

Mave you deen ougged dy coior cooes or unreadadie component markings? Forget it! DM-3, the low cost R/C Bridge, measures true component values ... in seconds ... to better than 5%. And, its all done with only 2 operating controls and a unique solid-state null detector, to zero-in on exact component selection instantly! Completely wired, calibrated and tested. DM-3 includes an extensive instruction/applications manual, and operational theory too

SPECIFICATIONS

Resistance Range: $10 \Omega-100$ megn. (6 Ranges: 10-100 $, 100-1000 \Omega, 1 \mathrm{~K}-10 \mathrm{~K} \Omega, 100 \mathrm{~K}-1$ meg』. 1 megn-10 megn) Capacitance Range: $10 \mathrm{pFd}-1 \mathrm{mFd}$ (5 Ranges: $10-100 \mathrm{pFd}, 100-1000 \mathrm{pFd}, 001-.01$ $\mathrm{mFd}, .01 \mathrm{mFd}-1 \mathrm{mFd}$, $.1-1 . \mathrm{mFd}$.) Null Detector: 2 hi-intensity LEDs-hi/lo markings. Accuracy: $<5 \%$ of hi-intensity dial, range switch setting. Wght. 2 lbs. Power Needed: $117 \mathrm{~V}, \mathrm{AC}$ @ 60 Hz 3 W .*

54^{95}
 Add $\$ 2.50$

 shipping/handlinEach measures $6.75^{\prime \prime} \mathrm{L} \times 7.5^{\prime \prime} \mathrm{W} \times 3.25^{\prime \prime} \mathrm{H}$.; completely assembled, ready to start testing at once. Order your DESIGN MATES today! $\cdot 220 \mathrm{~V} @ 50 \mathrm{~Hz}$ available at slighty higher cost.

All DESIGN MATES are made in USA; available off-the-shelf from your local distributor. Direct purchases from CSC can be charged on Bank Americard, Master Charge, American Express. Plus, you get a FREE English/Metric Conversion Slide Rule with each order. Foreign orders please add 10% for shipping/handling. Prices are subject to change.

$\Rightarrow{ }^{2}$

COOTINENTAL SPECIALTIES CORPORATION

44 Kendall Street, Box 1942, New Haven, CT 06509 • 203/624-3103 West Coast Office: Box 7809, San Francisco, CA 94119 • 415/421-8872 Canada: Len Finkler Ltd., Ontario

The DELA-BRIDGE I Analyzes antenna characteristics, simplifies adjustment.
 The DELA-BRIDGE I, when tied into your grid dip meter or low

 power exciter, quickly and easily analyzes: (1) Existing antenna \& feed line characteristics, (2) Tuning \& loading coils, (3) Filter \& interstage coupling networks. Direct readout then lets you adjust for optimum performance.
DELA-BRIDGE I Specifications:

FREQUENCY RANGE: 50 Khz to 250 Mhz RESISTANCE RANGE: 0 to 500 Ohms, balanced or unbalanced, log scale
SIGNAL REQUIREMENTS: 1 MW to 2 Watts maximum from any grid dipper or signal generator POWER REQUIREMENTS: Internal 9V battery ACCURACY: $\pm 3 \%$ at 500 hms TO READ \& INTERPRET: Complete null and reactance determination-not frequency sensitive-internal integrated circuit amplifier allows use with low signal inputs

DELA-BRIDGE I guaranteed for 1.
year by Delavan Electronics, Inc.
Delavan Electronics' new Amateur- Products Group might be a new name to you, but we're no stranger to amateur radio operations and equipment. Delavan is well funded and deeply involved in aerospace and industrial controls. Delavan stands behind its products 100% and guarantees the DELA-BRIDGE I unconditionally for 1 full year

Order your DELA-BRIDGE 1 today!

GENTLEMEN:
\square Please send me one DELA-BRIDGE I at $\$ 39.95$, completely assembled and tested
$\square_{\text {at } \$ 29.95}^{\text {Please send me one DELA-BRIDGE I ready-to-assemble Kit }}$ at $\$ 29.95$
Add $\$ 2.50$ to cover postage and shipping charges. Arizona residents also add 5\% state Sales Tax.

CFP COMMUNICATIONS HAS MOVED!

Your new Ham Headquarters, located in the southern tier of New York, is at your service. Jim Beckett, WA2KTJ, is pleased at your terrific response and is looking forward to meeting and assisting even more Amateurs.
Send us a SASE for a map indicating our new location along with our used equipment list.
Mail orders are handled promptly from this new store. BankAmericard and Mastercharge accepted.
new - custom vacuum-formed plastic signs! Our regular store hours are:
Tues. - Fri.
11:00-1:00 p.m. 4:00-9:00 p.m.
10:00-12:00 noon 1:00-5:00 p.m.
(Sat. subject to change due to HAMFESTS)
CFP Communications Division of CFP Enterprises 211 NORTH MAIN STREET HORSEHEADS, NEW YORK 14845 Phone: 607-739-0187

OLD reliable OLD OLD \$495.00 RX 1 ROTATOR $\$ 495.00$

10 YEARS OF PROVEN SERVICE. THE HEAVY DUTY ROTATOR THAT WILL TURN ANY BEAM ARRAY YOU WANT TO INSTALL. CONTROL BOX TO MATCH S LINE. 115VAC SELSYN IND. 380 DEGREES ROTATION. LIMIT SWITCH UNIT IS $91 / 2^{\prime \prime}$ DIA. $28^{\prime \prime}$ IN HEIGHT.

Mastercharge \&

BankAmericard accepted.
Designed Built Backed by ANTENNA MART
Box 7, Rippey, lowa 50235

Semiconductor Supermarket

ALL DEVICES AND COMPONENTS ARE FACTORY FIRSTS - NO SECONDS OR FALLOUTS

	7400 NTTL				
5*/400N	16	5N745in	21	SN74151N	175
${ }_{5 N / 4015}$	16	SN7453N	21	SN74153N	135
5N7402N	21	SN74SaN	${ }^{41}$	$5 \times 14154 \mathrm{~N}$	125
$5 \times 7403 \mathrm{~N}$	16	SN7459a	25	SN/4155N	121
5 SN 700 N	21	SN7600	2	5 F 7156 N	130
SN740SN	24	SN7400	45	SN7415\%	130
SN706\%	45	5N74728	39	SN74160N	175
5N/407N	45	SN7473	45	SN74161N	145
SN7408N	3	5N7474	45	SN14163N	165
$5 \times 1409 \mathrm{~N}$	25	SN7475N	80	SN74164N	165
5N7410N	20	SN7476N	41	SN/4165N	165
${ }^{5 N 7411 N}$	30	SN7480N	50	5 F 74166 N	170
5N/412N	42	$5 \times 7482 \mathrm{~N}$	175	$5 N 74167 \mathrm{~N}$	550
SN/4iJN	${ }^{5}$	5 N 7483 N	1.15	SN74170N	100
5N7414N	10	5N7485N	112	5N/4172N	18.00
5N/416N	43	SN7465N	45	SN74173N	170
SN7417N	43	$5 N / 488 \mathrm{~N}$	150	SN74174	195
5 S 7418 EN	25	SN7489N	300	SN74175s	195
SN1420N	21	SN7490N	59	5N74176N	90
SN74215	39	SN/491N	120	SN7417\%	90
SN1423N	37	SN/4928	82	SN/4180N	105
5N7625	${ }^{43}$	SN7493N	82	SN741815	355
5 SN 726 N	31	SN7494N	91	SN/4182N	95
5N74278	31	SN7995	91	SN7484N	230
5N74295	42	SN/496N	91	SN7485N	220
SN7430N	26	SN74100N	1.25	SN/4187N	600
5N74323	31	SN74102N	49	SN/4190N	150
SN/437N	47	SN/4121N	55	SN741918	150
5 N 7438 N	40	5 SN7122N	49	SN/4192N	150
5N7439a	25	SN14172N	105	SN741938	140
SN/440N	21	SN/4125N	60	SN/4194N	145
SN/741N	1.10	$5 \mathrm{SN7125N}$	81	SN74195*	100
${ }^{5 N 1746205}$	108	5 N 74132 N	300	SN74196\%	125
SN/463N	105	SN/4141N	115	SN/4197\%	1.00
SN740N	110	SN74142N	650	SN741985	225
5N1445N	110	SN/4143N	1.00	SN74199\%	275
5 F 7465 N	115	SN/7144N	100	SN74200N	700
${ }^{5 N} 14478$	89	5 S14145N	115	SN042515	250
5N7488	99	SN741485	250	SN747605	500
SN/450N	26	SN74150N	1.10	SN74285*	600
	20s Discount for 100 Combined 7400's				
C04000	25			14 Cl 10 N	
CD4001	15			$74 \mathrm{C2ON}$	65
C04002	3	${ }^{2} 04030$	${ }^{65}$	14 CJON	
c04006	250	CDS035	185	24C42\%	215
CDS001	7	CDS040	245	macion	150
CDS009	39	CO4042	190	$34 \mathrm{C74}$	1.15
CDS010	59	COSO4	150	14 Cgon	300
CD4011	25	CDS046	231	14c9s*	200
CDS012	2	CDSO4	275	34C10]N	125
CO4013	47	COS049	79	${ }^{3} \mathbf{C l} 151$	290
CD4016	\%	coseso	19	74.154	100
CD4011	135	cosest	298	7etis	215
CDS019	35	coses 3	298	14.160	325
${ }^{\text {cose }} 020$	169	c04060	325	${ }_{3} 4 \mathrm{CL51}$	325
CDS022	126	cos066	1.75	${ }^{4} \mathbf{4} 163$	300
CDA623	2	c04069	45	${ }^{4} \mathbf{4} 164$	325
CD4024	150	CDAO71	45	${ }^{4} \mathrm{CH} 1313$	260
coters	25	CDE081	45	${ }_{34} \mathrm{Cl}_{193}$	215
C04021	69	${ }^{34} \mathbf{C O O N}$	39	24C195	275
C04028	158	${ }^{14 C 025}$	55	80 CS 9	150
C04079	230	${ }^{24} \mathrm{COAN}$	15		

Put your best fist forward.

To be one of the best fists on the air, all you need is a little practice and the HAL 2550 Keyer and its precision-built companion, the FYO Key.
The 2550 features a triggered clock pulse generator, sidetone monitor, iambic keying and dot memory. There's an optional tailormade ID too.

Many amateurs remember the famous FYO Key, a key

infinitely adjustable to every fist. Now it's back again, better than ever, and available only from HAL. The 2550 Keyer and the FYO Key make a great combination.

So to put your best fist forward, send today for a detailed brochure on these two great products.

-

CLEAN SIGNAL aLL CHANNELS -

Actual Spectrum Analyzer Photograph of an RP Synthesized Radio

ONLY RP GIVES YOU BOTH PLUS

- SUPER ACCURACY (.0005\%)
- FULL 2M FM COVERAGE

$144-148 \mathrm{MHz}$

WORKS WITH MOST FINE AMATEUR OR COMMERCIAL GRADE RADIOS

MFA-22 SYNTHESIZER

SEND FOR
FULL DETAILS

810 DENNISON DRIVE BOX 1201 CHAMPAIGN, IL 61820 Phone: 217.352.7343

A $2-1 / 2^{\prime \prime} \mathrm{H} \times 3.7 / 8^{\prime \prime} \mathrm{W} \times 4^{\prime \prime}$ Deep B 2-1/2"' $\mathrm{H} \times 5-1 / 2^{\prime \prime} \mathrm{W} \times \mathbf{7}^{\prime \prime}$ Deep C $2-1 / 2^{\prime \prime} \mathrm{H} \times 5-1 / 2^{\prime \prime} \mathrm{W} \times 11^{\prime \prime}$ Deep

Model	Drive Power	Output Power	Current Drain	Max. Drive	Case Size	Price
RFA-3-40-HB	3 Watts	40 Watts	4 Amps	5 Watts	B	$\$ 129.95$
RFA-3.-60-HB	3 Watts	60 Watts	7 Amps	5 Watts	B	159.95
RFA-3-110-HB	3 Watts	110 Watts	14 Amps	5 Watts	C	199.95
RFA-3-200-HB	3 Watts	200 Watts	24 Amps	5 Watts	C	349.95
RFA-10-75-HB	10 Watts	75 Watts	8 Amps	15 Watts	B	129.95
RFA-10-100-HB	10 Watts	100 Watts	13 Amps	15 Watts	B	1899.95
RFA-10-150-HB	10 Watts	150 Watts	17 Amps	15 Watts	C	239.95
RFA-25-150-HB 25 Watts	150 Watts	17 Amps	40 Watts	C	249.95	
RFA-25-200-HB	25 Watts	200 Watts	22 Amps	40 Watts	C	29995
RFA-1-75-HB	1 Watt	75 Watts	9 Amps	5 Watts	B	179.95
RFA-1-25-HB	1 Watt	25 Watts	3 Amps	4 Watts	A	99.95

Dealer and Distributor Inquiries solicited
All models will operate with
reduced output from as little as one watt drive.
Amplifiers are supplied pre-tuned for band portion in which they are to be used.
Comparable models for 6 and 10 meters
are also available.

Great New Turn On

Howard Microsystems introduces MOCO II, the newest and most efficient Morse Code translator in the state of the art.

MOCO II ushers in a new generation of Morse Code readers. Its central processing unit is combined with computer programmed firmware totalling more than 8,000 bits of memory, which permit MOCO II to translate standard alphanumeric Morse Code, even punctuation, automatically.

Simply connect MOCO II to the speaker leads and then just turn it on. No knobs, no adjustments. One switch calibration automatically determines and displays sending speed.

MOCO II is not a kit. It's completely assembled and tested, includes integral power supply, parallel ASCII and Baudot outputs for existing display units.

PRICE: \$199.00
Available as options are a video display. or a teletype driver with 60 ma . loop supplies.

Order from Howard Microsystems, Inc., 6950 France Avenue South, Minneapolis, MN 55435 (612) 925-2474.

DISPLAY OPTIONS

A. Baudot Driver/Interface for TTY . $\$ 75.00$
B. Video Character Display with VHF TV

Modulator...................................... $\$ 325.00$
(Kit.. \$175.00)

FREQUENCY STANDARD

- Markers af $100,50,25,10$ or 5 kHz selected by front panel switch.
- Zero adjust sets to WWV. Exclusive circuit suppresses unwanted markers.
- Compact rugged design. Attractive, completely self contained.
- Send for free brochure.

PALOMAR ENGINEERS BOX 455, ESCONDIDO, CA 92025

P. O. BOX 822

\$39.95 Per Kit

GENERAL DESCRIPTION

printed circuit board

LOGIC PROBE

The Logic Probe a : unit which is for the most part indespensble in trouble thooting
loge tamiliet TTL. OTL. RTL. CMOS it lope lemititi TH. OTL, ATL, CMOS It oft of the corcuit under tett, derawing a scant 10 mA mar it uner a MAN3 seadout to to mA mas. it uner a maNs wrdout ro symboh (HII-1 ILOW)-e IPULSt)-p The symbole (MI)-I ILOW)-otPULSt)-P. The Probe can detect high liequericy puliser to cercuit damage will tevil.

printed circuit board \$9.95 Per Kit

MINI POWER SUPPLIES

These power supplies offer small sue, with a wide choice of voltage outputs They are all capable of delivering 300 mA and have dimentions of $1^{\prime \prime} \times 1^{\prime \prime} \times 3^{\prime \prime}$ The voltaper available are $+5 \mathrm{~V},-5 \mathrm{~V},+6 \mathrm{~V},-6 \mathrm{~V},+12 \mathrm{~V},-12 \mathrm{~V}$. All of these units easily assemble in less than a halt an hout, because of the fiberglass pristed circuit board construction. Please specify voltage when ordering.
$\$ 9.95$ per kit

LOW COST DIGITAL CLOCK KIT

Other companies have offered a low cont digital clock kit, but do not offe important extras such as, printed circuit boards, powes supplies cases, etc. We at James are doing just the opposite by offering a complete clock kit, that includer everything down to the line cord. This kit uses $25^{\prime \prime}$ FNO 70 displays, for HOURS, MINUTES, and SECONDS, in conjunction with the MM5314 clock chip. The printed circuit board is of high quality fiberglass, which is plated. The case is a $6 \times 1 / 2 \times 1$ walnut case with a plexiglass front, and is similar to the one in our TV WALL. Digital dock. It is available without the case for $\$ 16.95$
\$19.95 per kit.

ELECTRONIC ROULETTE Complete kit

$8^{\prime \prime} \times 8^{\prime \prime} \times 1^{\prime \prime}$
A 56 page book on the facts of Roulette included.
$\$ 29.95$ Per Kit

ELECTRONIC CRAPS

A 56 page book on the facts of Craps included.
\$19.95 Per Kit
Satisfaction Guaranteed. $\$ 5.00 \mathrm{Min}$. Order. U.S. Funds. Add $\$ 1.25$ for Postage - Write for FREE 19755 Catalog California Residents - Add 6\% Soles Tax

P.O. BOX 822, BELMONT, CA. 94002 PHONE ORDERS - (415) 592-8097

a NEW antenna principle

PROVEN IN EXACTING TESTS AND MANY YEARS ON THE AIR AT WøMBH - KøAST - KBVRM

Here is an ultra compact beam antenna which can be tuned to any frequency between 7.0 and 14.5 MHz . Weighing only 18 lbs. this antenna may not outperform a full sized beam but it sure will give you your share of DX and stateside contacts. Will handle 1 KW over a 100 kHz bandwidth.

- Fully weather proof
- Hi-Q, attenuates harmonics
- Mounts easily on TV masting - Comes assembled \& tested
- Figure 8 pattern

KITS 10-40 $\quad \$ 74.50$
LITTLE GIANT MODEL 100X1000-40
Other models available for 10,15 \& 20 meters
Little Giant Antenna Labs, Box 245, Vaughnsville, Ohio 45893

MIDLAND Communications Division 2-Meter Mobile: 15 Watts, 12 Channels

Dual conversion receiver with complete multiple FET front end, high-Q helicalized cavity resonators, zener regulated oscillators.
15-watt/1-watt transmitter with zener regulated crystal oscillator, high-Q and shielded stages, encased low-pass filter, instant automatic VSWR protection system.
External speaker, tone burst/ discriminator meter jacks.
... and Midland's RSVP. See your dealer for details.

Write for FREE Midland Amateur Radio Brochure P.O. Box 19032, Kansas City, MO 64141

YEAR-END SALE!

Uith a $\$ 25$ nreoaid order we'11 include a CT5091 4-function, 1 ? dioit calculator IC with data.

All merchandise is new unused surplus SEND FOR
and is sold on a money back guarantee Five dollar minimum order. Free first FREE FLYER
class postage on all orders. Califorclass postage on all orders. Callfor nia residents please add sales tax.

P.n. Box 41778 Sacramento, CA 95841

me-5 microminiakure tone encoder

DON'T MISS THAT CVV @s(o)

cW•TRANSMITTER

- Built-in Antenna Relay
- 160, 80, or 40M Plug-in Coil
- Crystal Contral
- Zener Regulated Chirpless Keying
- Clean Output - "T" Network
- Built-in 115 VAC Supply MODEL 50K - BASIC KIT $\$ 39.95$
ADD-ON OPTIONS: SIDETONE $(200-21 \mathrm{~K}) \ldots . .55 .95$ KEYER $(\mathbf{2 0 0}-22 \mathrm{~K}) \ldots 5 \quad 13.95$
MODEL 5OW-BASIC WIRED....... \$49.95
MODEL SOWS (WITH SIDETONE .559 .95
MODEL SOWK WITH KEYER $\$ 69.95$ MODEL SOWSK WITH SIDETONE \& KEYER) $\$ 79.95$ ORDER DIRECT OR WRITE FOR BROCHURE AND NAME OF NEAREST DEALER.

PHONE: (814) 432-3647
BOX 185-A . FRANKLIN, PA. 16323

NEW FROM MFJ

SUPER LOGARITHMIC SPEECH PROCESSOR MODEL LSP-520BX

UP TO 400% MORE RF POWER is yours with this plug-in unit. Simply plug LSP-520BX into the circuit between the microphone and transmitter and your voice suddenly is transformed from a whisper to a DYNAMIC OUTPUT!

Look what happens to the RF Power Output on our NCX-3. It was tuned for normal SSB operation and then left untouched for these "before" and "after" oscillograms.

Fig. 1 SSB signal before processing. See the high peaks and the low valleys. Our NCX-3 is putting out only 25 watts average power.

Fig. 2 SSB signal after processing with LSP. 520 BX . The once weak valleys are now strong peaks. Our NCX-3 now puts out 100 watts of average power.
Three active filters concentrate power on those frequencies that yield maximum intelligence. Adds strength in weak valleys of normal speech patterns. This is accomplished through use of an IC logarithmic amplifier with a dynamic range of 30 dB for clean audio with minimum distortion.
This unit is practically distortion-free even at 30 dB compression! The input to the LSP. 520 BX is completely filtered and shielded for RF protection.
Size is a mere $23 / 16 \mathrm{H} \times 31 / 2 \mathrm{~W} \times 4 \mathrm{D}$. Money back if not delighted and ONE YEAR UN. CONDITIONAL GUARANTEE.

Order now or write for FREE brochure.
LSP-520BX
$\$ 49.95$
ADD $\$ 1.50$ SHIPPING \& HANDLING
\square
DEALER INQIRIES INVITED
601-323-5869

P. O. BOX 494(H)

MISS. STATE, MS 39762

VANGUARD NOW HAS THE WORLD'S LARGEST SELECTION OF FREQUENCY SYNTHESIZERS FROM $\$ 129.95$
 SEND NO MONEY. WE SHIP C.O.D. ORDER BY PHONE AND SAVE TIME.

AVAILABLE FOR

AIRCRAFT, FIRE, POLICE
AND AMATEUR FREQUENCIES
We ship open account only to U.S. and Canadian government agencies, universities and selected AAA rated corporations.

Check these features:

- Smallest size of any commercially available synthesizer — only $1-3 / 8^{\prime \prime} \times 3-3 / 4^{\prime \prime} \times 7^{\prime \prime}$.
- Excellent spectral purity since no mixers are used.
- . 0005% (5 parts per million) accuracy over the temperature range of -10 to +60 C .
- Immune from supply line voltage fluctuations when operated from 11 to 16 volts D.C.
- Up to 8000 channels available from one unit. Frequency selected with thumbwheel switches.
- Available from 5 MHz to 169.995 MHz with up to 40 MHz tuning range and a choice of 1,5 or 10 kHz increments (subject to certain restrictions depending on the frequency band selected).
- Top quality components used throughout and all ICs mounted in sockets for easy servicirg.
- All synthesizers are supplied with connecting hardware and impedance converters or buffers that plug into your crystal socket.

Vanguard frequency synthesizers are custom programmed to your requirements in 1 day from stock units starting as low as $\$ 129.95$ for transmit synthesizers and $\$ 139.95$ for receive synthesizers. Add $\$ 20.00$ for any synthesizer for 5 kHz steps instead of 10 kHz steps and add $\$ 10.00$ for any tuning range over 10 MHz . Maximum tuning range available is 40 MHz but cannot be programmed over 159.995 MHz on transmit or 169.995 MHz on receive (except on special orders) unless the i-f is greater than 10.7 MHz and uses low side injection. Tuning range in all cases must be in decades starting with 0 (i.e. - 140.000 - 149.995 etc.). The output frequency can be matched to any crystal formula. Just give us the crystal formula (available from your instruction manual) and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.

10 CHANNEL SCANNER

For All Regency HR series 2, 2A, \& 2B MT-15, MT-25, \& AQUAFONE Transceiver FEATURES:

- Selectable Priority Channel
(Selected By Channel Selector Switch)
- 10 Second Delay Before Scan Resumes After Transmit
- 2 Second Delay Before Scan Resumes After Signal Loss
- Plugs Into Existing Crystal Sockets. Simple 5 Wire Hook-Up Without Major Modification To Radio
- Simple Modification For Selective Channel Bypass
- Optional Digital Channel Display

SCANN 10B 10 Channel Scanner $\$ 52.50$ (Wired Only)
D10B Digital Channel Display
$\$ 21.75$
(Wired Only)
$\$ 74.25$
NET PRICE FOR BOTH
\qquad $\$ 299.99$
6T-HR2-3 Crystal Deck (6 more FQ's in HR2, HR-2A) Kit $\$ 11.50$, Wired $\$ 15.50$
HF 144 U MOSFET Preamp
Kit $\mathbf{\$ 1 1 . 9 5}$, Wired $\$ 17.95$
METRUM II IN STOCK - WRITE FOR INFORMATION!
Topeka FM Communications \& Electronics 125 Jackson
Topeka, Kansas 66603 913-233-7580

THE TIGER 15\% Savings on Gas
A Capacitive Discharge Ignition system absolutely guaranteed NOT to interfere with your radios \& equally guaranteed to improve your auto's operation and gas mileage.
No rewireing necessary. Engine cannot be damaged by improper installation. Either of three models fits any vehicle or stationary engine with 12 volt negative ground, alternator or generator system. Uses standard coil \& distributor now on your engine. Dual switch permits motor work or tune-up with any standard test equipment.
Write for free booklet that not only is the BEST description of CDIs, but also explains the need for such a system. Current prices assured til Jan. '76.

D-D ENTERPRISES
P.O. Box 7776

San Francisco, CA 94119

Tover Mandincus

A\&W Electronics

is your source for:
STANDARD'S NEW Horizon/2!

- 12 channels $-20+\mathrm{W}$ out
- front facing speakers - 3 W audio
- 70 dB adjacent channel rejection
- $4+\mathrm{MHz}$ spread includes MARS, CAP
- Standard's unique 6 month warranty
- Call or write now for additional information, including price.
- ALSO -

SEASON SPECIALS ON BOMAR CRYSTALS

A \& W is now stocking xtals for most common repeater pairs for installation in:

STANDARD	ICOM
REGENCY	WILSON
DRAKE	CLEGG
GENAVE	HEATH

SPECIAL OFFER . . . $\$ 3.25$
(Expires Jan. 1, 1976)
Crystals also available for $220,450 \mathrm{MHz}$
Prepaid Orders accompanied by M.O. or Bank Checks are shipped immediately. U.P.S. C.O.D. also available if specified. Please add $\$ 1.00$ for Shipping/Handling.

A\&W Electronics
491 Riverside Ave.
Medford, MA 02155
(617) 396.5550

American Made Quality at Import Price

Full 12 Channel, 15 Watts with HI/LO power switch

Here is everything you need, at a price you like, for excellent 2 meter FM performance. The 12 transmit channels have individual trimmer capacitors for optimum workability in point-to-point repeater applications. Operate on 15 watts (minimum) or switch to 1 watt. 0.35 uv sensitivity and 3 watts of audio output make for pleasant, reliable listening. And the compact package is matched by its price. $\$ \square 100$ Amateur Net

EEB Announces New Industrial Division

HP	SCOPES	DC
TEKTRONIX	RECEIVERS	AUDIO
DEI	COUNTERS	VIDEO
CEI	SIGNAL GENERATORS	HF/VHF/UHF
GENERAL RADIO	RECORDERS	MICROWAVE
ETC.	SIGNAL CONDITIONING	TELEMETRY
	POWER SUPPLIES	

If your organization has test equip. requirements call or write EEB. Inquiries welcomed.

This Month's Special: RACAL 6367 - Dual Spectral display unit, for use with 6217 Rcvr (below). Racal's price $\$ 3775$. EEB's price new in factory cartons $\$ 765$ RACAL 6217 - Receiver $1-30 \mathrm{MHz}$, SSB/FM/AM .2 to 13 kHz BW . Reconditioned. $\$ 1975.00$

CLOSE OUT SPECIAL - $\$ 19.95$ while they last ARR-52 solid state vhf receiver
Easily converted to 2 -meter FM. Now set for $163.173 \mathrm{MHz}, 16$ channels. Includes schematic diagram and conversion details. As described in the Surplus Sidelights Column, (Pg. 58 Oct. CQ).
OVER 400 SOLD
BankAmericard \& COD Welcome

Electronic Equipment Bank, Inc.
516 Mill Street, N.E. Vienna, Virgina 22180 (703) 938-3350

NEW! HAM'S ALMANAC
 YM4XR - Monthly Cartoon by Les Funston, WA6HJL - Major Convention and Contest Dates - OSCAR Orbital Data - Frequency Allocation Charts - Great Circle Computations on Pocket Calculators - Memorable Events, 1960-75 - and more
Special Pre-Publication Offer: $\$ 2.25$ each postpaid for direct orders received before Nov. 21. (Available at participating dealers or direct for $\$ 3.00$ in December) Number of copies determined by this offer and by advanced dealer sales so act now to assure getting a copy.
A/kan Products • Box 3494 - Scottsdale, Ariz. 85257

INTERNATIONAL MORSE DECODER

International Morse Decoder International Morse Code in Parallel ASCII OUT

$\$ 73$

Television Display Circuit
ASCII IN; Display a single row of up to 30 characters on your TV screen; No internal connection to TV set required.

\$118

Audio Converter Unit
Couple your receiver to the International Morse Decoder; Two stage active filter plus level detector; Can also be used to drive an audio oscillator for static free CW reception \$19
The above circuit boards are shipped assembled and tested

RTTY VIDEO DISPLAY UNIT

Reduces Printed Circuit Board Art Work From 2 Hours to 10 Min Simple as A.B.C.

 KEYBOARD and ENCODER KIT

* 53 Keys
* One Chip MOS Encoder
* Upper and Lower Case
* Standard ASCII Output
* Two Key Lockout

We are happy to announce a new addition to our keyboard and encoder line. Our new KBD3 uses a one chip MOS encoder system to give you maximum possible features with a minimum number of parts.

This keyboard produces a standard ASCII coded output that is compatible with TTL, DTL, RTL and MOS Iogic systems. You have the option of wiring the kit for normal typewriter style output in both upper and lower case letter, or all upper case format. All common machine control commands such as "line feed", "return", "control", etc. are provided on the keyboard. Four uncommitted or extra keys are available for your specific use requirements. Two of these have isolated output lines to the connector for special functions such as "here is".

Keyswitches are standard, full travel style with gold plated contacts for long troublefree service. Requires +5 Volts and -12 Volts.

KBD-3 Keyboard and Encoder Kit \$49.50 ppd

SOUTHWEST TECHNICAL PRODUCTS CORP.

219 W. Rhapsody Dept. HR
San Antonio, Texas 78216

The
 "STANDARD" by Heights

Light, permanently beautiful ALUMINUM towers

THE MOST IMPORTANT feature of YOUR ANTENNA IS PUTtiNg IT UP WHERE It CAN DO What you EXPECT. RELIABLE DX SIGNALS EARLIEST IN AND LAST OUT.

ALUMINUM

Self-Supporting
Easy to Assemble and Erect All towers mounted on hinged bases
Complete Telescoping and Fold-Over
Series available
And now, with motorized options, you can crank it up or down, or fold it over, from the operating position in the house.
Write for 12 page brochure giving dozens of combinations of height, weight and wind load.

ALSO TOWERS FOR WINDMILLS HEIGHTS MANUFACTURING CO.
In Almont Heights Industrial Park Almont, Michigan 48003

250 MHz FREQUENCY COUNTER

 MODEL 4X6C(includes temp. compensated oscillator $.0005 \%$ from -30° to $+60^{\circ}$.) SPECIFICATIONS
Frequency Range $500 \mathrm{kHz}-250 \mathrm{MHz}$ Sensitivityess than 80 mV at 150 MHz Input Z.................................. 50 ohms Max. Input Voltage 15 V rms, 50 V dc Time BaseCrystal Clock plus-minus 10 ppm $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ ambient
Readout 6 Digit 7 Segment LED
Power \qquad Dimensions $2 \%^{\prime \prime} \mathrm{H}, 10^{\prime \prime} \mathrm{L}, 7^{\prime \prime} \mathrm{D}$ Cabinet...$\ldots \ldots \ldots \ldots \ldots \ldots \ldots$.......................... PRICE \$270.00 fob Shawnee (Wired and Tested)
Include $\$ 2.50$ to cover Postage and Insurance

K-ENTERPRISES

 1401 East Highland - Shawnee, OK 74801
NOVICES!

NOW - A QSL BUREAU FOR YOU!
 FOR ONLY \$2 PER YEAR THE NOVICE QSL bureau

 WILL handle all your asl cards to other NOVICES. SAVE $\$ 4$ ON 100 , $\$ 10$ ON 200 CARDS A year sent through us. saves time, money and ends trying to exchange addresses through the qrm. Just put your cards in an envelope and mail to us - we do the rest. all novices may keep a sase on file with us.
NOVICE QSL BUREAU BOX 1111 BENTON HARBOR, MI 49022

Year End Specials

Freq. Counter Kit $\mathbf{- 0 . 2 5 0 ~ M H z \quad . \quad \$ 1 2 0 . 0 0}$
Basic Clock Kit - full 6 digit $\$ 17.95$
Calculator Kit, 9 function, 8 digit readout - with memory $\$ 17.95$
Electronic Dice Game Kit $\quad \$ 10.95$ Function Generator Kit $\$ 10.95$ Various other kits and electronic components available. Send SASE for flyer.

HAL-TRONIX
P. O. BOX 1101 SOUTHGATE, MICH. 48195 (313) 285-1782

MILITARY SURPLUS WANTED

Space buys more and pays more. Highest prices ever on U.S. Military surplus, especially on Collins equipment or parts. We pay freight. Call collect now for our high offer. 201 440-8787.

NEW ADDRESS

SPACE ELECTRONICS CO. div. of Military Electronics Corp. 35 Ruta Court S. Hackensack, N.J. 07606

LEARN RADIO CODE

Album contains three $12^{\prime \prime}$ LP's 21/2 hr. Instruction

THE EASY WAY!

- No Books.To Read
- No Visual Gimmicks To Distract You
- Just Listen And Learn

Based on modern psychological techniques-This course will take you beyond 13 w.p.m. in
LESS THAN HALF THE TIME! Available in Cassette also for only $\$ 10.95$.

EPSILON [5 RECORDS

508 East Washington St., Arcola, Illinois 61910

FREE DATA SHEETS WITH EVERY ITEM 749 IC WITH EVERY $\$ 10$ ORDER*

- REDUCE YOUR PROJECT COSTS
- MONEY-BACK GUARANTEE
- 24-HOUR SHIPMENT
- ALL TESTED AND GUARANTEED

TRANSISTORS (NPN):

2N3563 TYPE RF Amp \& 0sc to 1 GHz (pl.2N918) $6 / \$ 1.00$ 2N3565 TYPE Gen. Purpose High Gain (TO-92/106) $6 / \$ 1.00$ 2N3567 TYPE High-Current Amplifier/Sw $500 \mathrm{~mA} \quad 4 / \$ 1.00$ 2N3866 TYPE RF Power Amp 1.5 We 450 MHz 2N3903 TYPE GP Amp \& Sw to 100 mA and 30 MHz 2N3919 TYPE RF Power Amp 10-25 W e $3-30 \mathrm{MHz}$ 2Na 274 TYPE Ulitra-High Speed Switch 12 ns MPS6515 TYPE High-Gain Amplifier hFE 250 $\$ 1.50$ 4/\$1.00	Assort. NPN GP TYPES, e.g. 2N3694, 2N3903, etc. (15)	
2N3638 TYPE (PNP) GP Amp \& Sw to 300 mA	$\$ 2.00$	
$\$ 1.00$		2N3638 TYPE (PNP) GP Amp \& Sw to $300 \mathrm{~mA} \quad 4 / \$ 1.00$ 2N4249 TYPE (PNP) Low-Noise Amp $1 \mu \mathrm{~A}$ to 50 mA

4/\$1.00

FET's:

N-CHANNEL (LOW-NOISE)
2N4091 TYPE RF Amp \& Switch (TO-18/106) 3/\$1.00
2N4416 TYPE RF Amplifier to 450 MHz (T0-72) $\quad 2 / \$ 1.00$
2N5163 TYPE Gen, Purpose Amp \& Sw (T0-106) $3 / \$ 1.00$
2N5486 TYPE RF Amp to $\mathbf{4 5 0} \mathrm{MHz}$ (plastic 2 N 4416) $\quad 2 / \$ 1.00$
E100 TYPE Low-Cost Audio Amplifier
4/\$1.00
ITE4868 TYPE Ultra-Low Noise Audio Amp $\quad 2 / \$ 1.00$
TIS74 TYPE High-Speed Switch 40S 3/\$1.00
Assort. RF \& GP FET's, e.g. 2N5163, MPF102, etc. (8) \$2.00 P.CHANNEL:

2N4360 TYPE Gen. Purpose Amp \& Sw (TO-106) $3 / \$ 1.00$
E175 TYPE Hiah -speed Switch 125Ω (TO-106) $3 / \$ 1.00$
NOVEMBER SPECIALS:
$\begin{array}{lr}\text { 1N4 } 154 \text { DIODE } 30 \text { V/10mA-1N914 except } 30 \mathrm{~V} & 25 / \$ 1.00 \\ \text { 2N2222 NPN TRANSISTOR GP Amp \& Switch } & 5 / \$ 1.00\end{array}$
$\begin{array}{ll}\text { 2N2222 NPN TRANSISTOR GP Amp \& Switch } & 5 / \$ 1.00 \\ \text { 2N2907 PNP TRANSISTOR GP Amp \& Switch } & 5 / \$ 1.00\end{array}$
2N3553 RF Power Amp 5 W © 150 MHz , 10 W @ $50 \mathrm{MHz} \$ 2.00$
2N3904 NPN TRANSISTOR GP Amp \& Switch $5 / \$ 1.00$
2N3906 PNP TRANSISTOR GP Amp \& Switch 5/\$1.00
2N5108 RF Power Amp 2 W e 450, 1 W e 1 GHz $\$ 2.50$
E101 N-CHANNEL FET Low Current, Low Vp Amp/Sw $\quad 3 / \$ 1.00$
MPF 102 N -CHANNEL FET RF Amp- $200 \mathrm{MHz} \quad 3 / \$ 1.00$
340 T IA VOLT, REG. Specify 5, 6, 12, 15 or 24 V-W/Ckts $\$ 1.75$
556 DUAL 555 TIMER $1 \mu \mathrm{sec}$ to 1 hour (DIP) $\$ 1.00$
8038 WAVE FORM GENERATOR $\sim \square \wedge$ Wave W/Ckts $\$ 4.50$
MM5316 DIGITAL CLOCK-Snooze/Alarm/Timer Hrs, Mins, Secs, 4 or 6 Digit-With Specs/Schematics $\$ 5.50$

LINEAR IC's:

308 Micro-Power Op Amp (TO-5/MINI-DIP) $\$ 1.00$
309 K Voltage Requlator 5 V e 1 A (TO-3) $\$ 1.50$
324 Quad 7410 p Amp, Compensated (DIP) $\$ 1.75$
3802.5 Watt Audio Amplifier 34 dB (DIP)
$\$ 1.29$
555 Timer 1 رs-1 hr. NES55, LM555, etc. (MINI-DIP)
709 Popular 0 p Amp (DIP/TO-5)
723 Voltage Regulator $3.30 \mathrm{~V} @ 1.250 \mathrm{~mA}$ (DIP/TO-5)
739 Dual Low-Noise Audio Preamp/Op Amp (DIP)
1458 Dual 741 Op Amp (MINI-DIP)
741 Freq. Comp. OP AMP (DIP/TO-5/MINI-DIP)
$\$.65$

741 Freq. Comp. OP AMP (DIP/TO-5/MINI-DIP)
$\$.65$
DIODES:
ZENERS-Specify Voitage 3.3, 3.9, 4.3, 5.1, 6.8, 8.2 $400 \mathrm{~mW} 4 / \$ 1.00$
$9.1,10,12,15,18,22,24,27$ or 33 V ($\pm 10 \%$) 1 Watt $3 / \$ 1.00$
1N3600 TYPE Hi-Speed Sw 75 V/200 mA 6/\$1.00
IN3893 TYPE RECTIFIER Stud Mount 400 V/12 A $2 / \$ 1.00$
1N914 or 1 N4 148 TYPE Gen. Purp. $100 \mathrm{~V} / 10 \mathrm{~mA} \quad 15 / \$ 1.00$
D5 VARACTOR 5.50 W Output e $30-250 \mathrm{MHz}, 7.70 \mathrm{pF} \quad \$ 5.00$
F7 VARACTOR 1.3 W Output e $100-500 \mathrm{MHz}, 5-30 \mathrm{pF} \quad \$ 1.00$
-MAIL NOWI FREE DATA SHEETS supplied with every item from this ad. FREE ON REQUEST-749 Dual Op Amp ($\$ 1.00$ value) with every order of $\$ 10$ or more, postmarked prior to 12/31/75
ORDER TODAY-All items subject to prior sale and prices subject to change without notice. All items are new surplus parts - 100\% functionally tested.
WRITE FOR FREE CATALOG offering hundreds of semiconductors not listed here. Send 104 stamp.
TERMS: All orders must be prepaid. We pay postage. $\$ 1.00$ handling charge on orders under $\$ 10$. Calif, residents add 6% sales tax. Foreign orders - add postage. COD orders - add $\$ 1.00$ senvice charge.

BOX 4181 BA, WOODSIDE, CA 94062
Tel. (415) 851-0455

fleg , 而品

RATES Non-commercial ads 10^{ϕ} per word; commercial 3 ds $35 \not \subset$ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS \leqslant ponsored by non-profit organizations receive one free Flea Market ad (subject to our editing). Repeat insertions of hamfust ads pay the noncommercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed and must include full name a id address. We reserve the right to reject unsuitable copy. Ham Radio can not check out each advertiser and thus cannot je held responsible for claims made. Lialiility for correctness of material limited ts corrected ad in next available issue.

DEADLINE 15 th of second preceding month.

SEND MATEIIIAL TO: Flea Market, Ham Radio, Green rille, N. H. 03048.

DEAF HAMS. I would like to know about deaf hams' experiences as amatt:urs, how they got interested in the hobby, any problems had in obtaining licenses, and whethe there are deaf hams using modes other than l:W, such as ATV or RTTY. Please write to Jerry Larie, WN9NPC, 922 Suburban Apts., DeKalb, IL 60115.

RTTY - Model 32 AisR - $\$ 300.00$, Model 33 ASR . $\$ 600.00$. Both like new and working perfectly. Can arrange shipping. K9HJV, Tony, 312-349-9002.

PLEASE HELP. We are in the process of publishing a book which will contain as many awards as possible that are offerec to ham radio operators. We therefore would like to hear from you regarding any award your club, net, or organization may have available. Also, if y ou know of any awards we would appreciate this information. The information needed is as follows: Name of the award, given by whom (net, club, eti:.), description of the award, requirements, price, ind name of awards chairman. Also list the time, dates, and frequencies of your net or club meetings. Send information to Joseph F. Williams, WA9TSG, 114 East Brown Street, Milwaukee, Wisconsin 5:,212. We want to be ready for the printers by Decismber 1 st. Your help will be greatly appreciated. Thank you.
HOMEBREWERS: Sta np brings list of high quality components. CPO : iurplus, Box 189, Braintree, Mass. 02184
CANADIAN JUMBO SURPLUS and Parts Catalogs. Gargains Galore. Send \$1. ETCO.HR, Box 741, Mon. treal "A" H3c 2V2.
RTTY NS-1 PLL TU (HR 2/75) wired/tested $\$ 29.95$ ppd. Nat Stinnette Electronics, Tavares, FL 32778.

UHF 1/4 KW REPEATER, Motorola \$395, TTL/2 RTTY demodulator $\$ 75$, Touchtone decoder $\$ 100$, Speed call Touchtone to dial pulse converter $\$ 150,31 / 2^{\prime \prime}$ Questar telescope $\$ 1200$. Tom Pappan, Box 147, Corunna, M1 48817, 517-743-4607.

ROCHESTER HAMFEST 1976 is Saturday, May 22. Your name added to mailing list or information write: Rochester Hamfest, Box 1388, Rochester, N. Y. 14603.

ATTENTION HOBBIEST: Complete line of high quality low cost universal printed circuit boards. NOT a kit, but complete ready to use. Boards complete with 22 single sided contacts, all holes drilled (over 700), tin plated copper, FR-4 glass epoxy. For as low as $\$ 5.50$. Each board guaranteed, or your money back. Will quote on custom work. Write for complete catalog. Camp Control Company, P. O. Box 174, Garland, Texas 75040.

SELL - Quality nylon cable ties 6 inch for $\$ 2.75$ pp/hundred. New Manuals for AN/ARC-3, AN/ ARC-12, AN/TRC-1 for $\$ 5.00$ pp. W4VQD/ $\varnothing, 106$ Sheridan Ct., Leavenworth, Ks. 66048

JAPANESE TRANSISTORS - All Transistors original factory made. Over 500 types available. Write for free catalog. West Pacific Electronics, P. O. Box 25837, W. Los Angeles, CA 90025.
SELL: Heath SB 610 monitor $\$ 70$, you ship. C. Dyson, 5748 N.E. 62nd, Seattle, Wash. 98115.

PORTA-PAK the accessory that makes your mobile really portable. $\$ 59.95$ and $\$ 39.95$. Dealer inquiries invited. P. O. Box 67, Somers, Wisc. 53171.

MODERN 60 MIN. CODE CASSETTES. Novice 0-5 wprn. Progressive 5.13 wpm , General $13-15 \mathrm{wpm}$ Extra 20-22 wpm. $\$ 3$ each, $4 / \$ 10$. Royal, Box 2174, Sandusky, Ohio 44870 .

VIDEO RECORDER-REPRODUCER ELECTRONIC ASSEMBLY. Contains power supply with adjustable, regulated outputs of ± 10 to 18 VDC (± 15 VDC (@) $11 / 2$ amps.). Third output is 10 VDC at 3 amps. Perfect for CMOS, TTL, Op-amps. Contains over 900 useable parts with extremely long leads. Includes 182 transistors IC's, diodes, and FET's, numerous resistors, capacitors, crystals, inductors, delay lines and varicaps. Transistors will operate in HEATHKIT TV's. Schematics and semiconductor cross reference supplied upon request. Total price including shipping is $\$ 15.00$. Write to Madison Electronics Company Inc., P. O. Box 369, Madison, Alabama 35758 for a free brochure.

SAROC ELEVENTH NATIONAL CONVENTION Hotel Sahara Space Center, Las Vegas, Nevada January 8.11, 1976. ADVANCE REGISTRATION $\$ 12.00$ per person includes: Advance and regular registration tickets; Option to purchase up to ten additional tickets for main prize drawing @ $\$ 2.00$ each; Admission to Friday social hour hosted by T.P.L. Communications and Tri-Ex Tower Corp., with SAROC, adults only; Admission to exhibit area and technical sessions; Admission to Saturday social hour, hosted by Ham Radio Magazine with SAROC, adults only; Hotel Sahara Safari Brunch for Sunday; Accommodations reservations card for SAROC special room rate at Hotel Sahara @ $\$ 17.00$ or Thunderbird Hotel @ $\$ 14.00$ per night, plus room tax, single or double occupancy; Tax and gratuity on all items listed except hotel room tax. ADVANCE REGISTRATION, with Midnight Show, $\$ 22.00$ per person includes all items above plus Hotel Sahara's Midnight Show, with two drinks in Hotel Sahara Congo Show Room. ADVANCE REGISTRATION: with Dinner Show, $\$ 29.00$ per person includes all items listed above plus Hotel Sahara's Dinner Show, Prime Rib (no drinks) in Hotel Sahara Congo Show Room. Advance registrations accepted if received in SAROC P. O. Box on or before January 1, 1976 Full refund on advance registration (after convention is over) if written request is received in SAROC P. O. Box on or before January 8. Regular registra tions will be accepted at the door for an additional $\$ 2.00$ each, so why not send your registration now. Special SAROC Hotel Sahara modified Safari package via most scheduled airlines serving Las Vegas from selected principal cities. Write for details. SAROC, P. O. Box 945, Boulder City, NV 89005.

TELL YOUR FRIENDS about Ham Radio Magazine.

4-DIGIT AM-PM FLUORESCENT CLOCK PANEL tung.sol $\$ 9.99$ D2004 "PANEL OPTICS"

> 8008 Microprocessor
> 21021024 Static RAM 150.00 $\square 1023.95$ 2102-1 1024 Static RAM 2102:2 1024 Static RAM 1101256 bit RAM MM5260 1024 RAM MM5262 2048 bit RAM 2513 Character generator MM5202Q Eraceable PROM $1702 A$ Eraceable PROM BIAST RECTIFIER PRICES
 $\begin{array}{cc}\text { Type } & \text { PIV } \\ \square 1 N 4001 & 5010 \text { for } 45 c \\ \square 1 N 4002 & 10010 \text { for } 55 c \\ \square 1 N 4003 & 20010 \text { for } 65 c \\ \square 1 N 4004 & 40010 \text { for } 75 c \\ 1 N 4008 & 60010 \text { for } 85 c \\ \square 1 N 4006 & 80010 \text { for } 98 c \\ \square & 1 N 4007 \\ 100010 \text { for } 1.29\end{array}$
POSTAGE STAMP MOBILE SPKR MIKE 41/2 D/CTl $\begin{aligned} & \text { Type MM5333 by National utilizes P channel low- thresh- } \\ & \text { old enchancement mode devices and ion implanted deple- }\end{aligned}$ DVMCMP $\begin{aligned} & \text { tion mode devices. Provides lokic circuit for } 4 / / 2 \text { dikit } \\ & \text { DVM. TTL cumpatible }\end{aligned}$ With instruction sheets

 very elaborate circuit for controlling many electrical and eleatronic devices. Easily controls speeds of electric
drills, brush type motors. ete. 115 vac , rated at 1100 watts. With variable speed or dimming control in
heav.duty aluminum case. $3 \times 23 / 4 \times 2$ With diagram heavy-duty a
and hookups.

	COM2502	UART, 40 pln	\$12.50
TELE	COM2601	USRT, 40 pln	24.00 9.95
TYPE	KR-2376St	Keyboard encoder Roim	12.50
CHIPS	KR-3600ST	10 channel mutiplex	14.95
	CAL1022	10 channel multiplex 12 digit calculator	

This unit is not advertised
Motorola Communications at

$\square 555$
Timer
2 for $\$ 1$
or
0558
Dual 741
3 for $\$ 1$

the oristinal cost of $\$ 4.50$ each (for insertion in their Whlkie Talkie Program ,
It's a 60 -ohm imp MIKE: It's an excellent speaker too, covering broad range in sound.
YOLT NICAD POWER PAK
Includes 4 "A" cell nicad
batteries booked up to give
you 6 -volts for all types of

7-SEGMENT READOUT SALE! \$ 175 mosinive voract
© * Up to 20 mils por seg. at 5 VV .

| Type | $S 1 z e$ | Color | Sale | 3 for |
| :--- | :--- | :--- | :--- | :--- | :--- |

all above by monsanto

LITRONIX "JUMBO'S"

* Single sire: $1 \times 3 / 4 \times 5 / 16$ * Duals slige: $8 \times .9 \times-29$ segment
- 7 -Segment, $25-$ mils per segment $\begin{array}{ccccc}\text { Type } & \text { Slse } & \text { Color } & \text { Sale } & 3 \text { for } \\ \square 721 D & .8 & \text { Red } & \$ 5.95 & \$ 15.00 \\ 7727 & .5 & \text { Red } & 5.95 & 15.00 \\ \square 746 F & .6 & \text { Red } & 3.85 & 11.00 \\ \square 747 & .6 & \text { Red } & 3.95 & 11.00\end{array}$ D-PPlus or Minus 1 plus a digit ($11 / 2$ digits) E—Dual digits
F-Plus or Minus 1

Terms: add poxtage Rated: net 30
Phone Orders: Wakefield. Mass. (617) 245-3829
Phone Orders: Wakefield, Mass. (617) 245-382
Retail: $16-18$ Del Carmine $S t$., Wakefield, Mass. off Water Street) C.O.D.'S MAY HE PIIONEU $\square 20 \mathrm{c}$ CATALOG Fiter Optics. 'ICs', Semi's, Parts MINIMUM ORDER - $\$ 4.00$
P.O. BOX. ©42H, LYNNFIELD,MASS. 01940

DRAKE DRAKE DRAKE

NOW SHIPPING NEW IN FACTORY SEALED CARTONS, LATEST MODELS:

TR-4C TRANSCEIVER \$599.95
R-4C RECEIVER ... $\$ 549.00$
T-4XC TRANSMITTER $\quad \$ 580.00$
RV-4C REMOTE VFO $\$ 110.00$
AC-4 POWER SUPPLY $\$ 120.00$
MS-4 SPEAKER \$ 24.95
L-4B LINEAR AMPLIFIER $\quad \$ 825.00$
C-4 STATION CONSOLE $\quad \$ 399.00$
MN-2000 ANTENNA MATCHBOX $\$ 220.00$
DSR-2 VLF/HF DIGITAL RECEIVER
\$2,950.00
SPR-4 RECEIVER $\$ 599.00$
TR-22C FM TRANSCEIVER \$229.95
ALSO SHIPPING DRAKE WATTMETERS, FILTERS, NOISE BLANKERS, MICROPHONES.

TOP TRADES GIVEN. WRITE OR PHONE BILL SLEP (704) 524-7519.

ELEPR ELLECTRRONICE P. 0. B 0×100, HIGHWAY 441, DEPT. HR OTTO, NORTH CAROLINA 28763

INFO-TECH MORSE KEYBOARD

FEATURES:

- VARIABLE SPEEDS FROM 8 TO 35 WPM
- ADJUSTABLE WEIGHT
- 64 CHARACTER RUNNING MEMORY WITH BUFFER FULL INDICATOR
- BOTH GRID BLOCK AND CATHODE KEYING
- ADJUSTABLE GAIN SIDE TONE MONITOR
- CAN STORE 64 CHARACTERS FOR DELAYED TRANSMISSION
- INCLUDES THE FOLLOWING SPECIAL KEYS: BK, BT, AR, SK, CQ AND DE
- 'N' KEY' ROLLOVER TO AVOID MISSED CHARACTERS
- FULL ONE YEAR WARRANTY .

$$
\text { AND BEST OF ALL . . . ONLY } \$ 239.50
$$

Delivered in the Cont. USA
SEND FOR DATA SHEET FOR ADDITIONAL INFORMATION WATCH FOR INFO-TECH'S NEW FAMILY OF DIGITAL SYSTEMS . . COMING SOON .
RTTY KEYBOARD, RTTY TO VIDEO DISPLAY, AND MORSE TO VIDEO DISPLAY.
WFO-TEGH: P. O. BOX $84 . \begin{aligned} & \text { CHESTERFIELD, MO. } 63017\end{aligned}$

VERY in-ter-est-ing! Next 4 big issues \$1. "The Ham Trader," Sycamore IL 60178

TELETYPE SPEED CONVERTER circuit pack with instructions, $\$ 9.50$ plus $\$ 1.00$ shipping. Other teletype and microcomputer supplies. Wilcox Enterprises, 25W178 - 39th Street, Naperville, IL 60540.

QRP TRANSMATCH for HW7, Ten-Tec, and others. Send stamp for details to Peter Meacham Associates, 19 Loretta Road, Waltham, Mass. 02154.

AUCTION. Erie Amateur Radio Society's fourth annual Thanksgiving Auction will be held on Sunday, 11 a.m. 1:30 p.m., November 30, 1975 at the Laborer's Union Hall, 2109 West Perkins Avenue, Sandusky. Ohio, across from the New Departure plant. Admission \$1.00.

1000V 1 AMP DIODES, 10/\$1.00. Zeners, capacitors, resistors, cmos \& switches for projects, free catalog. NuData Electronics, 104 N. Emerson, Mt. Prospect, IL 60056.

WANTED: TOWER, motorized crank up, 80^{\prime} WøPDI, Route 2, Box 218, Buffalo, Mo. 65622.

SOCIETY OF WIRELESS PIONEERS offers Life Membership to active and former C.W. operators on comm'L., military, gov't., etc. wireless/radio circuits. Contact: Society of Wireless Pioneers. Dept. H, P. O. Box 530, Santa Rosa, California 95402.

DRILLS - Carbide and high speed steel for PC work. Send SASE, Bob's Electronic Repair, Box 393, Bay City, MI 48706.

PC's, Send large S.A.S.E. for list. Semtronics, Rt. \#3, Box 1, Bellaire, Ohio 43906.

BLIND HAM, would really appreciate any donated 160 M thru 70 cM transceivers. Send to WAØYQO, 137 N. Lawn, Apt. 1Q, Kansas City, Mo. 64123.

OSCAR SLIDES, set of $5, \$ 1.25$. Launch and spacecraft. Proceeds AMSAT. K6PGX, P. O. Box 463, Pasadena, CA 91102.

DC-4 POWER SUPPLY for sale at $\$ 90$. Call Bob, WB2PRC at $914-477-3927$ or write Maple St., Greenwood Lake, N. Y. 10925.

RECONDITIONED TEST EQUIPMENT for sale. Catalog $\$.50$. Walter, 2697 Nickel, San Pablo, Ca. 94806.
FREE Catalog. LEDS, microphones, headsets, IC's, relays, ultrasonic devices, precision trimmer capacitors, unique components. Low Prices! Chaney's, Box 15431, Lakewood, Colo. 80215.

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines in assembled or kit forms, plus many other suppression accessories. Free literature. Estes Engineering. 930 Marine Dr., Port Angeles, WA. 98362.
BUY-SELL-TRADE. Write for monthly mailer. Give name, address, call letters. Complete stock of major brands, new and reconditioned equipment. Call us for the best deals. We buy Collins, Drake, Swan, etc. SSB \& FM. Associated Radio, 8012 Conser, Overland Park, Kansas 66204. (913-381-5901).

QSL'S - BROWNIE W3CJI - 3035B Lehigh, Allentown, Pa. 18103. Samples with cut catalog 354 .

PROMS PROGRAMMED: Your 1702A programmed for $\$ 5.00$ or 10 for $\$ 30$. Money back guarantee. Send for information including simple octal form. MLT systems, P. O. Box 1522, Canyon Country, CA. 91351.
"HAM BUY LINES" Send name and address for Literature. Vito lacopelli, 172077 St., Brooklyn, New York 11214.

SELL: Heath HW202, 2 meter FM. Just built and tested with 146.94 xtals, $\$ 170$. $5 / 8 \Omega$ magnetic mobil ant., \$20. Cecil Moore, W6RCA, 1053 Big Oak Ct., San Jose, CA. 95129, (408) 257-2196.

NEW CANADIAN MAGAZINE. "Electronics Work Shop". \$5.00 yearly, sample \$1.00. ETCOB, Box 741, Montreal, H3C 2 V 2 .

HT-220 - Mint condition, 2 frequency slimline with flexible antenna and rapid-charge Ni -Cad. $\$ 400$. T. Eifert, WB7AHI, P. O. Box 5441, Eugene, Oregon 97405.

FREE: 8 Extra Crystals of your choice with the purchase of a new ICOM IC-22A at $\$ 249$. With the 10 crystals that come factory-installed in the IC-22A, this gives you a total of 18 crystals! For equally good deals on Kenwood, Drake, Collins, Ten-Tec, Tempo, Regency, Swan, Atlas, Midland, Alpha, CDE, Standard, Genave, Hy-Gain, Antenna Specialists, Cush-Craft, Mosley, Hustler and others, write or call Hoosier Electronics, your ham headquarters in the heart of the Midwest and become one of our many happy and satisfied customers. Hoosier Electronics, P. O. Box 2001, Terre Haute, Indiana 47802. NOTE OUR NEW PHONE NUMBER! (812). 238-1456.

CLOSE OUT SALE - J-beam antennas. Model 2/14P, 2 meters, 15.2 dB over dipole. $\$ 45.00$ each. Free stacking harness included with two antennas. VHF Communications, 53 St. Andrew, Rapid City, S. D. 57701 .

TRAVEL-PAK QSL KIT - Send call and 25; receive your call sample kit in return. Samco, Box 203, Wynantskill, N. Y. 12198.

HW-101, \$250; mint HP-23, \$40; HD-15 (phonepatch), $\$ 25 ; 275$ watt matchbox, $\$ 50$; TWOER, $\$ 35$ with DC supply. SASE for info and more items. K6SRM, 272 4th St. East, Sonoma, CA. 95476.

DO-IT-URSELF DXPEDITION - Stay at ZF1SB Cayman Is. Vertical antenna and Caribbean at your doorstep. Diving/fishing if band folds. Write Spanish Bay Reef Resort, Box 800K, Grand Cayman, B. W. I.

CONTESTERS: Announcing the W7BBX programmable contest keyer - four 512-bit memories, pad dle programming, no-fail power supply, high rf immunity, designed for smooth synchronous operation, 10-60 wpm. SASE to HFB Enterprises, 12002 Cheviot Dr., Herndon, Virginia 22070.

160 METER TOP LOADING SECTIONS for vertical antennas, $\$ 34.50$ ppd. 80 meter sections, $\$ 31.50$ ppd. Details write Bill Turney, WAØRFF, 1414 East 9th, Hutchinson, Kansas 67501.

HAM RADIO MAGAZINE, complete set mint condition $\$ 80$. Shipping in U.S. prepaid for certified check or money order, otherwise add shipping and allow two weeks. AI Nowakowski, W3HDD, 316 Hickman St., Bridgeville, Pa. 15017.

FERRITE BEADS: Ferroxcube beads w/specIfication and application sheet - 10 @ $\$ 1.00$ postpaid. Includes latest catalog. CPO Surplus, Box 189 , Braintree, Mass. 02184.

3CX100A5/7289 PULLOUTS, untested but guaranteed good. $\$ 1.50$ ea., $4 / \$ 5.00$, $10 / \$ 10.00$ ppd. Carmichael Communications, P. O. Box 256, Carmichael, CA. 95608.

COLLINS; 30S.1 in excellent operating and physical condx for Bendix R-1051B/E receiver. Sid Sidman, 3571 Gresham Court, Pleasanton, Calif. 94566.

SALE: Hallicrafter HT-32A, defective audio out-put. RF section good. \$60.00. Alden Davis, 212 Santa Fe, Halstead, Ks. 67056.

ENGRAVED RADIO LICENSE. Exact reproduction in solid brass. Permanent identification. Send good Xerox copy, with $\$ 5.00$, to Metal Art Graphics, 1136 Potomac Ave., Hagerstown, Md. 21740.

COLOR VIDEO TAPE RECORDER, new, \$250.00, TV camera, new, $\$ 150.00$, video tapes $\$ 5.00$, cartrivision manuals, spare parts and bulk videotape. Send stamp. Dennis Trimble, 5154 Roeder Rd., San Jose, Cal. 95111, 408-227-6330.

FIGHT TVI with the RSO Low Pass Filter. For brochure write: Taylor Communications Manufacturing Company, Box 126, Agincourt, Ontario, Canada. MIS 3B4.
TELETYPEWRITER PARTS, gears, manuals, supplies, tape, toroids. SASE list. Typetronics, Box 8873, Ft. Lauderdale, FI. 33310. Buy parts, late machines.

WILL NOT BE UNDERSOLD!

TPL SPECIALS

TPL (TRANSISTORIZED PROGRESS LINE) by General Electric features all transistorized receiver, exciter and power supply, with three or four tubes in the transmitter depending upon the model.

SIX METER TPLS

RE 72 JB3 - 42 to $50 \mathrm{MHz}, 100$ Watts Output. With NOISE BLANKER to eliminate ignition and other noises. Two frequency transmitter, single frequency receiver. These should be great for six meter use. With accessories. Regularly $\$ 335.00$ only $\$ 275.00$
FE/RE 72 JA3 - 42 to $50 \mathrm{MHz}, 100$ Watts Output. Single frequency transmit and receiver. With accessories. Regularly $\$ 250.00$
only

TWO METER TPLS

FE/RE 73 JA6 - 152 to $162 \mathrm{MHz}, 80$ Watts Output, single frequency transmitter and receiver. With accessories. Regularly $\$ 225.00$ only $\quad \$ 195.00$
RE/FE 53 JA6 - 152 to $162 \mathrm{MHz}, 35$ Watts Output, single frequency transmit and receive. With accessories. Regularly $\$ 175.00$ only....$\quad \$ 155.00$

RE/FE 53 JC 6 - 152 to $162 \mathrm{MHz}, 35 \mathrm{Watts}$ Output, TWO FREQUENCY TRANSMIT AND RECEIVE. With accessories. Regularly $\begin{aligned} & \$ 200.00 \\ & \text { only } \$ 180.00\end{aligned}$

QUANTITIES ARE LIMITED PLEASE SPECIFY SECOND CHOICE

Send check or money order today.
DuPAGE FM INC.

P. O. Box 1, Lombard, IL 60148
(312) 627-3540

TERMS OF SALE: All items sold as is. If not as represented return for refund or exchange (our option) within five days of receipt, shipping charges prepaid. Illinois residents must add 5\% sales tax. Personal checks must clear before shipment. All items sent freight collect. Accessories do not include crystals, relays, reeds or antennas.

DON'T GET RIPPED OFF

Shur-Lok Mobile VHF Radio Lock

Plus $\$ 1.00$
Shipping
\& Handling
U.S. Patent \#3410122

- SHUR-LOK will accommodate a unit with overall dimensions including mounting bracket up to $31 / 2^{\prime \prime}$ High and from $41 / 2^{\prime \prime}$ to $91 / 4^{\prime \prime}$ Wide.
- Prevents access to rig's mounting hardware - No special tools
- Tempered steel no pick lock
- Also great for tape decks
- Satisfaction Guaranteed
- Special pry-proof hardware
- Dealer \& Club inquiries invited

You spent $\$ 200, \$ 300$ or $\$ 400$ to put your VHF rig in the car. Why not spend $\$ 15$ to keep it there!
Order now from National Mig's. Rep, for Amateur Radio Use.
PRUITT ENTERPRISES
Box 41H Tonopah, NV 89049 Tel: 702-482-3473

ADJ. LEVEL CONTROL
6-16 VDC 015 mA max \times TAL CONTROLLED DIGITAL CMOS

TEK SERIES
(All . 40" THICK)
TEK-125
$1.58^{\prime \prime} \times 2.08^{\prime \prime}$
$\$ 57.50$
TEK- 165
$2.08^{\prime \prime} \times 2.08^{\prime \prime}$

$\$ 65.00$

CLUB DISCOUNT ON 10 OR MORE

SHIPPED
FROM STOCK SCHEMATICS FOR 3 WIRE HOOKUP ON REQUEST SPECIFY POS OR NEG GROUND

- (Quantity \& OEM prices on application) (714) 627.4287 - (714) 627.1753 MONEY BACK GUARANTEE
SEND CHECK or M.O. (CA RESIDENTS ADD 6% TAX) WITH MAKE \& MODEL OF TRANSMITTER TO:
> ©, electroagrafl
> P.O. BOX 869 CHINO, CA 91710

MANUALS for Govt. surplus gear, $\$ 6.50$ each: URM25D, CV-591A/URR, TS-382D/U, ALR-5, TS.497B/ URR, SG-3/U, USM-159. Thousands more available. Send 50 e (coin) for 22-page catalog. W3IHD, 7218 Roanne Drive, Washington, D. C. 20021.
GET YOUR 1976 ARRL HANDBOOK. $\$ 6$ ppd. from Ham Radio, Greenville, NH 03048.

RADIO ARCHIVES, amateur ancedotes solicited for (SASE subscription) monthly PR newsletter. Electronic Avocations, 3207 4th St. N., Minneapolis, Minn. 55412.
KWM-1 KWM-2/2A and S/Line Booklet on Problems and Solutions is completed. Price $\$ 2.50$ to cover printing, material, postage. Frank Andrei, W3OEL, MR 1, Saltsburg, Pa. 15681.

WANTED: R-390A parts. W6ME, 4178 Chasin Street, Oceanside, Ca. 92054.

MICRO-TO MK II deluxe epoxy-glass drilled circuit boards. $\$ 4.00$ postpaid; with semicons $\$ 11.80$. K3CUW, 1304B Mass. Ave S.E., Washington, D. C. 20003.

MANUALS for most ham gear made 1940/65, some earlier. Send SASE for specific quote. Hobby Industry, WøJJK, Box H-864, Council Bluffs, lowa 51501 .
TELETYPE EQUIPMENT FOR SALE for beginners and experienced operators. RTTY machines, parts, supplies. Special beginners package consists of Model 15 page printer and TH5-TG demodulator, $\$ 125.00$. Atlantic Surplus Sales, 3730 Nautilus Ave., Brooklyn, N. Y. 11224. Tel: (212) 372-0349.

WANTED: tubes, transistors, equipment, what have you? Bernard Goldstein, W2MNP, Box 257, Canal Station, New York, N. Y. 10013.
QSL CARDS - Something completely different. Nothing even close to it on the market! Samples: 25\%. W5UTT, Box 1171D, Garland, TX 75040.
EXCLUSIVELY HAM TELETYPE 21st year, RTTY Journal, articles, news, DX, VHF, classified ads. Sample 30 e . $\$ 3.00$ per year. Box 837, Royal Oak, Michigan 48068.
SELL - $312 \mathrm{B5}$ round emblem $\$ 395$, DX RF compressor for Collins $\$ 75$, FT101, A-1 condition, $\$ 500$. 2 mtr. Tempo FMH H.T. 12 xtais, nicads, touchtone, 2 ant., charger, \$245. Monty, WA3IFQ - 215-884-6010
NEW FALL BOOK CATALOG available free from Ham Radio. Send postcard today to request your free copy. Ham Radio, Greenville, NH 03048.

PROTECT YOUR HOME AND HAMSHACK. Burglar/ fire alarm supplies, famous manufacturer. Catalog 25e. Refundable. Battery operated smoke detector $\$ 49.95$. Alden, Box 341, Lynbrook, New York 11563.

RF CONNECTORS, PL259 or SO329, five for $\$ 3.50$ postpaid. Free catalog. COAKIT, Box 101-D, Dumont, NJ 07628.

TELSTAR AND MADISON ELECTRONICS PRESENT the ultimate CW keyboard keyer with 72 character memories. One memory 369.95; three memory 409.95; six memory 469.95; write for literature. Madison Electronics, 1508 McKinney, Houston, TX 77002. 713/224-2668.

WHAT DO YOU WANT? BUYERS \& SELLERS has the largest listings of used ham gear - anywhere See our display ad and find out how to get the gear you want.
STOLEN HR-2 Regency \#04-02655 from E.Systems parking lot in Huntington, Indiana on August 28 Frequencies marked on panelling ($F 15513$ \& E 15489). If you have any information, contact owner Joe Shaw, WB9GEQ, Lot \#90, Walls Trailer Park, Huntington, IN 46750.

BUG BOOKS! For the first time, here's the full scoop on microprocessors written at the experimenter's level. Write for full details. Ham Radio Magazine, Greenville, NH 03048.

YOUR AD belongs here too. Commercial ads 35 f per word. Non-commercial ads 10 d per word. Commercial advertisers write for special discounts for standing ads not changed each month.

TIRED OF IGNITION NOISE?

End your problems now with our SHIELDED IGNITION SYSTEMS. Easily installed kit provides all items necessary to reduce ignition noise to less than 1 " S " Unit. Kits for 19651975 U.S. autos except 1975 GM.

$\$ 30.95$ - Kit for 6 cyI. U.S. Auto
 $\$ 35.95$ - Kit for 8 cyl. U.S. Auto

Add $\$ 4.98$ for Electronic Ignition Systems.

- Mass. residents add applicable Sales Tax - Specify Year, Mfg., Engine, Model and
$5 / 3^{\prime \prime}$ or $13 / 16^{\prime \prime}$ Hex Size of Spark Plugs -
- Order now or send SASE for details -

SUMMIT ENTERPRISES

20 Eider Street
Yarmouth Port, Mass. 02675
617-398-3837

CATALOG GOVERNMENT SURPLUS ELECTRONIC EQUIPMENT For 1975

 EDEE UPON REQUEST! Write for Copy of Catalog WS-75 Now! Address: Attention Dept. HR
1016 E. EUREKA - Box 1105 - LIMA, OHIO - 45802

Crystal Products Co.

HIGH STABILITY CRYSTALS

- For Industrial, Commercial, Amateur \& C.B.
- Competitive prices, normally 1 week delivery.
- All crystals shipped prepaid insured airmail. QUANTITY USERS CALL FOR QUOTES Write or call:

WANDA BURCH
CRYSTAL PRODUCTS CO.
P. O. BOX "E" - COLLINSVILLE, OKLA. 74021 918-371-4269

R648/ARR-41 RECEIVER

Mini version of R-390A with many features of R390A Digital Readout: 500 kHz to 24.999 MHz 1.4 kHz to 6 kHz Mechanical Filters

Crystal Calibrator: 500 ohm Output. 17 tubes. Input: 28 Volt- $115 \mathrm{~V} .400 \mathrm{~Hz}-250 \mathrm{~V}$ @ 100 MA Size: $8^{\prime \prime} \times 17^{\prime \prime} \times 22^{\prime \prime}$. Weight: 34 lbs.
Information sheet available
Price: $\$ 199.50$ tested: FOB Tucson, Arizona
Kolar, inc.
4484 E. TENNESSEE ST., TUCSON, AZ. 85714

Factory New Full leads. Fairchild RTL IC's. uL 900 uL 914. YOUR CHOICE

3 for $\$ 1.35 \mathrm{ppd}$.
UNPOTTED TOROIDS - All toroids are center tapped, 88 MHY or 44 MHY

Price is a low 5 for $\$ 2.75 \mathrm{ppd}$.

CARBON TRIMMERS

Miniature $1 / 4$ watt units for lim-ited-space applications. PC type terminals. Max 500 volts. Ohm ratings are:
$100,200,500,700,1000,1.5 \mathrm{~K}, 2.5 \mathrm{~K}, 700 \mathrm{~K}$.
25 ¢ ea. or $6 / \$ 1.35 \mathrm{ppd}$.

9 PIN SOCKET - SNAP-IN MINIATURE for P.C. Board Mtg.

6 for $\$ 1.10 \mathrm{ppd}$.
NEW . . . Red 6 foot \#18-2 line cord with flanged safety plug - $\quad 55$ ea.; $3 / \$ 1.35 \mathrm{ppd}$. $11 / 4$ inch miniature alliga-
 tor clips. Bright vinyl red or black insulator. Nickle plated.

9 for $\$ 1.00$
SPST SLIDE SWITCHES (Red) Made by Stackpole - 4A, 125 V A.C.

25 e ea. ppd.

NEW NEW NEW

Sperry SP-332 contains two 7 segment readouts, .330 high, side by side layout, black glass face, orange characters with decimal. $3 / 4$ in. square. W/specs.
$\$ 3.50$ each, 3 for $\$ 10.00$

NEW SIZES - VERTICAL MOUNT PC BOARD POTENTIOMETERS
American made (CRL) high quality pots. Available in the following sizes: 750 ohms, 1500 ohms, 25,000 ohms, 50,000 ohms, 100,000 ohms. Price is 5 for $\$ 1.00$ ppd.
Transformer - American Made - Fully shielded. 115 V Primary. Sec. $24-0-24$ @ 1 amp with tap at 6.3 volt for pilot light.

Price - A low $\$ 3.15$ each ppd.

AMERICAN MADE

500 MFD. 15V, long leads. $3 / 4^{\prime \prime}$ dia. $\times 21 / 4^{\prime \prime}$ long. $\quad 55 \mathrm{c}$ each $3 / \$ 1.50 \mathrm{ppd}$.

CRL DISC CAPACITORS

. $1 \mathrm{MFD}, 10 \mathrm{~V} 3 / 3^{\prime \prime}$ dia., long leads.
10 for $\$ 1.00 \mathrm{ppd}$.
SPDT MINI-SLIDE SWITCH, Imported, black, 3/4" O.C. with two $6^{\prime \prime}$ leads 35 ea. ppd. SEND STAMP FOR BARGIN LIST
Pa. residents add 6% State sales tax ALL ITEMS PPD. USA.
Canadian orders for less than $\$ 5.00$ add $\$ 1.00$ to cover additional postage costs.

Improve Your Reception With An Ameco Preamp

MODEL PT - 6 thru 160 meters - 20 DB GAIN IMPROVES SIGNAL-TONOISE RATIO - PROVIDES MASTER POWER CONTROL FOR ENTIRE STATION.

Model PT is a continuous tuning preamp, specifically designed for a transceiver. A frame grid pentode provides a low noise figure while improving sensitivity of receiver. Built-in transfer circuit enables PT to by-Fass itself while transmitting. Improves immunity to front end overload by use of its attenuator. NO modification or re-wiring of existing equipment. Includes 4 additional power outlets and all cables and plugs.
Model PT 117V, 60 Hz \qquad $\$ 69.95$

MODEL PLF - 6 thru 160 meters FOR RECEIVER USE ONLY USES DUAL GATE FET

With its low noise figure and 20 db gain, Model PLF improves weak signal performance of receiver.
For 117 volt AC 60 Hz \qquad $\$ 44.00$
Model PCLP is identical in all respects to the PLF except that two nuvistors are used instead of FET. 117 V. AC 60 Hz
$\$ 39.00$
At leading ham distributors, or write

AMECO EQUIPMENT CO.

275 Hillside Avenue Williston Park, New York 11596

NoW Open every nite until 9:00 p.m.! If you're a HAM and live or travel in New England, you'll eventually discover us. Why wait? Come in now and let us assist you in your equipment selection.

NEW ENGLAND'S HAM HDQTRS.

Sells \& Services:

ATLAS	NEWTRONICS
BOMAR CRYSTALS	REGENCY
CUSHCRAFT	STANDARD
DUPLEXER KITS	TEN-TEC
EMERGENCY BEACON	VHF ENG.
ITC	MANY OTHERS

Our large inventory also includes kits, amateur radio publications and the largest selection of used equipment in the Boston area.
Our business is devoted entirely to Amateur Radio!

TUFTS
 RADIO ELECTRONICS

386 MAIN STREET
MEDFORD, MASS. 02155
ALUMINUM TOWERS

\star TELESCOPING
\star WALL MOUNTED
\star GUYED
\star FREE STANDING
EXCELLENT FOR:
HAM COMMUNICATIONS
QUALITY MADE • LOW PRICED
ALUMA TOWER DIVISION
FRED FRANKE, INC.
BOX 2806HR VERO BEACH. FLA. 32960 PHONE (305) 567-3415
SOME TERRITORIES AVAILABLE

Inflation-Fighting		MEIRNU			P. O. Box 942 Colton, CA 92324										
DISCOUNTS		$\$ 10+$ orders take $5 \% ; \quad \$ 30+$ orders take 10%;$\$ 60+$ orders take $15 \%: \$ 100+$ orders take 20%													
DISCOUNTS															
transistors			(WHILE THEY LASTI!)												
	2 N 3566	20													
$2 \mathrm{NB34}-20$	2 2N3567	20	2 N 4093	90	2N4341	1.15	2N5459	40							
2 N918 20	2 N 3684	20	2 N 4121		2 N 4343		2N5460	45							
2 2N1711 30	2 N 3686	1.60	$2 N 4122$	20	2 N 43 B 2	2.00	2 N 5484	45							
$2 \mathrm{~N} 2193-35$	2 N 3806	3.90	$2 N 4123$	20	2 N 4416	75	2N5638	. 75							
$2 N 24533.00$	2 203821	1.00	2 N4125	20	$2 N 4856$	1.85	2 2N5639	45							
2 2N2918 2.00	2 203823	. 60	2 N4140	30	$2 N 4860$	1.30	2N5640	. 55							
$2 N 30692.75$	2503824	75	$2 N 4221$	75	$2 N 4861$	1.30									
2N3070 2.00	2N3906	20	2 N 4223	75	2 NSO19	2.40									
2N3071 2.10	2 203966	2.60	2 N 4286	25	2N5103	1.50	FM								
2N3368 1.10	2 N3970	2.10	2 N 4289	35	2 N 5116	3.50	1203	2.95							
$2 \mathrm{~N} 3414-20$	2 N3971	. 90	2 N 4304	30	2 N 5133		1206	625							
2 N 3417 , 30	2 N 3972	1.10	$2 N 4338$		2 N 5138		3955	3.50							
$\begin{array}{lll}2 N 3460 & 1.25\end{array}$	2 N 4091	1.50	$2 N 4339$	1.10	$2 N 5245$		3956	2.10							
2 N3550 2.75	2N4092	80	2 N 4340		2NS458	35	3958	1.50							
1. Add 50 e for postage 8 handling on orders under $\$ 10$.															
2. Send your order along with check or money order to: WEIRNU, P. O. Box 942, Colton, CA 92324															
3. A list of our complete stock will accompany all orders, but if you are not ordering right now but would like the list sent to you; send a stamped envelope with your request. 4. Calif, residents include 6% 5. All parts guaranteed.															

DUPLEXER KITS

PROVEN DESIGN. HUNDREDS SOLD IN US CANADA EUROPE. CONSTRUCTION WELDED ALUMINUM IRIDITE \& SILVER PLATED. SEE JAN. 74 QST RECENT EQUIP. MENT. ALL PARTS PROFESSIONAL QUALITY. EVERY. THING SUPPLIED. NO SPECIAL TOOLS. RECEIVER \& TRANSMITTER CAN BE USED FOR TUNE UP.

MOD. 62-1 6 CAVITY $135-165 \mathrm{MHz}$ POWER 250W ISOLATION GREATER THAN 100 dB 600 kHz . INSERTION LOSS 9 dB MIN. TEMP STABLE OVER WIDE RANGE PRICE $\$ 349.00$
MOD. 42-1 4 CAVITY SAME AS 6 CAVITY EXCEPT ISOLATION GREATER THAN 80 dB 600 kHz INSERTION LOSS . 6 dB MAX. PRICE $\$ 249.00$

NORTH SHORE RF TECHNOLOGY
Exclusive Distributor TUFTS Radio 386 MAIN ST., MEDFORD, MA 02155

6i7-395-8280

SUBAUDIBLE

tor

- Inexpensive multi tone system
- Low distortion Sinewave
- Adjustable to any freq./98250 Hz). Lower freq. avail.
- Rugged, plastic encased
- Excellent freq. stability over temp \& voltage
- Input 8-8VDC unregulated

Price	19.95	Lyte Products
Freq set at factory	5.00	P.0. Box 2083
Calif res. tax	1.20	Santa Clara Calit
Send for app. notes		95051

The new CST-50 Two-Band Transceiver provides coverage of two complete amateur bands with all the features needed by most operators. Imagine! The two most popular VHF bands in one rig with Phase Locked Loop frequency synthesis. In the CST-50 all frequencies are generated digitally by reference to
one highly accurate and: Covers entire 2 meter and 14 meter bands easily adjustable crystal. As soon as a new repeater is on you can use it, no waiting for crystals. Write for further information.

Covers MARS, CAP and
142 to 149995 MHz 142 to 149995 MH .

- Full digital trequency synthesis with 5 kHz steps
- No crystals to buy - ever - Bualt in repe
and 16 MH
25
- 25 watts output on each band
- No transmitter retuning across either band - FM AM recerver
- 8 pole crystal titer
- PTT microphone and mobile mount included - Operates on 12 volts DC
- Accessory connecto
or for tone burst and tone CST 50 two band
CST 50 two band transcerver
CPS 6 AC power $\mathbf{\$ 8 6 9 . 9 5}$ CPS 6 AC power supply $\quad \$ 839.95$

AMPLIFIERS with VERSATILITY

- Selectable bias - Linear Class AB for SSB, Class C for FM.
- Variable T-R delay
- SSB mode also usable for low power (<10W.) FM
- Solid State and microstrip construction.
- No tuning across entire Amateur band.
- Full VSWR and reverse voltage protection.

The latest innovation, unique to our line, is a variable T-R delay on SSB and CW.

2 METER

Write now or contact your nearest dealer!

SPECIALTY COMMUNICATIONS SYSTEMS

4519 Narragansett Avenue, San Diego, CA 92107
Louis N. Anciaux, WB6NMT
(Dealer inquiries invited.)
714-222-8381

FAST SCAN AMATEUR TELEVISION EQUIPMENT
 .SOLID STATE - BROADCAST QUALITY PERFORMANCE

AX-10 TRANSMITTER

AM-IA RCVR MODEM

ELECTRONIC DISTRIBUTORS, your Tower and Antenna Headquarters, now has the complete Cushcraft line in stock.

Cushcraft's popular 11 element yagi - Model A147-11. This unit, a descendant of an industry standard, has been cut for FM and vertical polarization.
Boom - 144"
Longest EI. - 40"
Gain - 13.2 dB F/B Ratio - 28 dB Freq. . 146.148 MHz
Ringo Ranger from Cushcraft \rightarrow The one eighth wave phasing stub and three half waves in phase concentrate your signal at the horizon for super signal strength! Model ARX-2: 100 watts, $137-160$ MHz .

Call, write, or come in today to discuss the optimum antenna for your station.

ELECTRONIC DISTRIBUTORS, INC.

1960 Peck Muskegon, MI 49441

Tel: 616.726-3196 TELEX: 22.8411

WHY USE LESS THAN THE BEST?

The Quality designed and built into this M-Tech Amplifier allows us to include our famous ONE YEAR WARRANTY!

MODEL P50AI

Mode: Class C for CW and FM
DC Input: $+13.6 \vee \mathrm{DC}$ (4) 8 amps for rated output
RF Input: 1.3 watts 140.165 MHz
RF Output: 40.60 watts $140 \cdot 165 \mathrm{MHz}$
Load Sensitivity: internally protected for any VSWR
Connectors: low loss 50』 BNC
COR switching w/LED indicator
Spurious output filter
Unique Low frequency negative feedback circuit
Send SASE for info-add'I models

$$
\$ 139.00 \text { ppd. continental }
$$

ORDER TODAY FROM:
M-Tech Engineering, Inc.
Box C, Springfield VA 22151 (703) 354-0573
M-TECH . . . The Quality Company

R-X NOISE BRIDGE

- Learn the truth about your antenna.
- Find its resonant frequency.
- Find R and X off-resonance.
- Independent $R \& X$ dials greatly simplify tuning beams, arrays.
- Compact, lightweight, battery operated.
- Simple to use. Self contained.
- Broadband 1.100 MHz .
- Free brochure on request.
- Order direct. \$39.95 PPD U.S. \& Canada (add sales tax in Calif.)

```
            PanOMLA
    BMTब|M|EERS
BOX 455, ESCONDIDO, CA 92025
```


radio communication

Great Britain's most popular amateur magazine. The official publication of the RSGB. Learn what English amateurs are building, learn what they are doing.
$\$ 10.50$ per year (12 issues)
Includes RSGB Membership

HAM RADIO
GREENVILLE, NH 03048

Station Identifier

The CWD-50 provides automatic ID for repeater stations in perfect Morse code. Has factory-programmed IC memory. Brochure describes CWID-50 and CWD rack models.

ELPROCON 1 WATT 2 METER TRANSMITTER	
	- TWO CHANNEL OPERATION - FREQUENCY RANGE 144 -148 MHz - POWER OUTPUT 1 WATT INTO 50 OHM LOAD - SUPPLY VOLTAGE 12 VDC - MULTIPLICATION FACTOR 8X - NARROW BAND FM $\pm 5 \mathrm{KHZ}$ - RUGGED BALANCED EMITTER OUT. PUT TRANSISTOR - SIZE $33 / 4^{\prime \prime} \times 17 / 8^{\prime \prime}$ - TESTED \& FULLY ASSEMBLED (Less Xtals) - $\$ 29.95$ which includes postage
	ELPROCON T. DS . 1907 W. CAMPBELL HOENIX, ARIZONA 85015

PARTS

IN STOCK

MILLEN
 HAMMARLUND JOHNSON AND OTHERS

Roller Inductors for KW Transmatch
$18 \mu \mathrm{~h}$ ($10-80 \mathrm{M}$)
$\$ 30.00$
$28 \mu \mathrm{~h}$ ($10-160 \mathrm{M}$) $\$ 32.00$
Prices FOB. Excess Transportation Refunded
G. R. WHITEHOUSE \& CO.

Newbury Drive Amherst, N. H. 03031

WANTED - BOTH
 EXPERIENCED VHF ENGINEER and HAM-TYPE TECHNICIAN for further details call or write VHF ENGINEERING

320 WATER ST.

P. O. BOX 1921.H

BINGHAMTON, N. Y. 13902
607-723-9574

RMS CORPORATION

THE ELECTRONIC STORE
675A GREAT ROAD (ROUTE 119)
LITTLETON, MASS.
(617) 486-4973

ICOM
HUSTLER
CONSIGNMENT EQUIP. KLM

MATRIC-KEYERS
ANTENNA SPECIALISTS
LARSEN
LARGE INV. COMPONENTS
RADIO PUBLICATIONS
$1-495$ to Rte. 119 Groton Exit 19
2 miles on Right
SEE US FOR
ICOM'S IC-21A \& DV-21 COMBO.

NOW
is the time to order

callbook

Don't wait until 1976 is half over. Get your new Callbooks now and have a full year of the most up-to-date QSL information available anywhere.
The new 1976 U. S. Callbook will have over 300,000 W \& K listings. It will have calls, license classes, names and addresses plus the many valuable back-up charts and references you have come to expect from the Callbook.
Specialize in DX? Then you're looking for the new, larger than ever 1976 Foreign Callbook with over 225,000 calls, names and addresses of amateurs outside of the USA.

On dealer shelves Dec. 1, 1975
Foreign Radio

Order from your favorite electronics dealer or direct from the publisher. All direct orders add $\$ 1.00$ shipping and handling per Callbook.

All band operation ($80-10$ meters) with most any random length wire, 200 watt power cap ability, ideal for portable or home operation, A must for Field Day. Sizel $2 \times 4 \mathrm{k} \times 2 \cdot 3 / 8$. Builtin neon tune-up indicator, Guaranteed for 90 days. Compact . easy to use . . . only 24.95 postpaid. (Add Sales Tax in Calif.)

SST ELECTRONICS, P.O. BOX 1, LAWNDALE, CA. 90260
THE ULTRA-BAL 2000
NOW An extremely rugged, weather-proof BALUNI - Full 2KW, 3-30 MHZ., $\mathbf{1 1 1}$ or 114 ratios.

- Special Tefflon insulation, May be used
- With dipole insulator and hang-up hook.

ONLY $\$ 9.95$ ppd. (state ratio)
At your dealer or order direct
K.E. Electronics Box 1279. Tustin Calif. 92680

$\underset{\substack{\text { mannab } \\ \text { motertit } \\ \text { mic }}}{ }$

You won't believe 1976 at HAM RADIO. We'll be wearing our new $81 / 4^{\prime \prime} \times 11^{\prime \prime}$ format, a great new size with larger pictures, larger schematics and improved circuit layouts.

There will be a great bonus as each page contains over 50\% more material. You'll find more to learn and more to enjoy each month from the NEW HAM RADIO.

Look for great new columns which will make your amateur activities more fun than ever before. Look for more bargains from our advertisers as they have the room to describe more of their products and in better detail.

SOME SAD NEWS

Yes, all of this is going to cost more, and a 30\% postal increase will not help a bit. It will cost less per article and less per idea, but the total cost just has to go up.

ACT NOW \& SAVE

You can still have the new HAM RADIO at the old HAM RADIO cost. Just get your order in before January 1, 1976 and you'll be all set to go at today's price.

Please enter my
\square new \square extension subscription
$\square 1$ YEAR
$\$ 8.00$
$\square 3$ YEARS 18.00
\square LIFE 125.00

These rates expire December 31, 1975
Name Call

Address
\qquad

City
Zip

Wedster

Everything from Set to Signal! 2602 E. Ashlan Dept. H Fresno, Calif. 93726 (209) 224-5111

FREE gift! Just for. writing for your free YAESU catalog.

FT101E Yaesu $\$ 749.00$ with New Speech Processor

CASH FOR 2-WAY
FM RADIO
MOTOROLA, GE, RCA, ETC. EQUIPMENT
MOBILES, BASES, PORTABLES, MOBILE-TELEPHONES
REPEATERS, REMOTE CONTROLS, TONE EQUIPMENT 2-WAY TEST EQUIPMENT Operational Units Only
Commissions/Finders Fees
CAL-COM SYSTEMS, INC.
701-51A KINGS ROW, SAN JOSE, CALIFORNIA 95112
Telephone 24 Hours 408/998-4444
FILTRON Mobile Noise Filter - handles 30A, 12 V w/reverse polarity protection. Multi-wound toroid pi-filter really does the job, $\$ 19.50$. FREE notes on mobile noise reduction.
D. R. CORBIN MFG. CO. p. o. Box 44

North Bend, Oregon 97459

Bird We are official distributors for Bird Wattmeters and elements.

RF Thruline Wattmeters \& most elements now in stock.

C.D. Ham II Rotator
 Includes brushed aluminum pin with your call! New Improved stive siz S 139.95 8 conductor cable for HAM II or CD-44 $\quad 16 \mathrm{f} / \mathrm{ft}$.

Drake in stock for immediate shipment.

R4-C Receiver
$\$ 549.00$
SPR-4 Solid State Gen. Cov. Receiver -. $\$ 599.00$
$\$ 580.00$
T-4XC Transmitter
MS-4 Speaker $\$ 24.95$
AC-4 Power Supply $\$ 120.00$
Globalman EK-108D Electronic Keyer, wired, complete with paddle. \qquad $\$ 74.95$
ANTENNAS - TA-36, TH6-DXX, in stock, write or call.
Antenna Specialists' amateur and marine antennas stock in depth.
Antenna Specialists HM-4 Rubber Ducky. (2M, $5 / 16^{\prime \prime}-32$ for Motorola/Johnson, etc.) $\$ 7.00$
Antenna Specialists HM-5 Rubber Ducky. (w/SL239 for TR-22C, etc.
$\$ 7.00$
CushCraft Antennas now in stock.
New Ringo Ranger ARX2, 135 thru 160 MHz $\$ 26.50$
Hy-Gain 10, 15, 20, 40, 80 meter 5 band trap doublet antenna
Savoy DGA-2M, 2 meter collinear _........ $\$ 29.95$
Trunk lip bracket for DGA-2M .-........ $\$ 14.95$
HyGain $1 / 4$ wave 2M grd plane $\$ 13.00$ Hustler 4BTV Vertical Antenna $\$ 79.95$
HyGain 18V $10-80 \mathrm{~m}$. vertical $\$ 33.00$
HyGain BN86 Deluxe Balun $\$ 15.95$
HyGain 18 AVT/WB 10-80 meters vertical $\$ 97.00$
Newtronics G6-144A fixed station antenna 6dB
gain
$\$ 52.00$
Newtronics BBLT 2 Meter Mobile Antenna with trunk lip $\mathrm{mt}, 3.4 \mathrm{~dB}$ gain, 143 thru 149 MHz $\$ 28.75$
Times Wire \& Cable, T-4-50, RG-8 foam $\quad 28 \mathrm{c} / \mathrm{ft}$. IC-230 - Call or write . $\$ 489.00$ Johnson small matchbox. Millen KW Transmatch. Astatic Model T-UG8-D104 Mike w/stand $\$ 48.60$ Also Stock Shure Communications Microphones. B \& W 850A or 852 for PiNet Band switching inductor for $\$ 74.95$ B \& W 334A Dummy Load-Wattmeter 0.300 MHz $52 \Omega, 0-10,100,300,1000$ watts $\quad \$ 167.50$ B \& W 374 Dummy Load-Wattmeter 0.300 MHz , $52 \Omega 0-15,50,300,1500$ watts $\$ 175.00$ Sockets for 8072, 8121, $8122 \ldots 3.95$ EBC Jr.-2 meter FM synthesized XCVR $\$ 599.00$ MC Jones Mod. 575.5 Micro Match SWR bridge, N Connectors. Use with 200 a meter. New value $\$ 100.00$

00, SB610, SB630.
Heathkit SB600, S
RME - VHF-126
Distributors for Tri-Ex \& Rohn Towers.
DX Engineering Speech Compressor for Collins 32 S xmtr $\$ 98.50$; for Collins KWM2 \$98.50; for Drake TR4(C) $\$ 128.50$.
Tubes for worldwide and domestic, commercial service. Large stocks of meters and capacitors.

New Item!

Patented strain-axial antenna connector has hole in center of insulator for RG-8/U or smaller diam. coax. Has holes for open wire feed. Also will handle economical RG-8/U balun. Instructions furnished. Also handles coax with loading coils. Size $5^{\prime \prime} \times 13 / 4^{\prime \prime}$. Wt. 12 oz. \quad. Ten Tec Model 505 Argonaut Transceiver SSB/ CW, QRP, 10.80 $\$ 329.00$ Hi Power Matchbox for comm'l use - handles up to 10 kW $\$ 350.00$
Sencore SM152 Sweep and Marker - Excellent physically \& working \qquad Marker only $\$$ 250.00

Johnson 154-10 or equal. Single section 23 thru 347 pF for KW transmatch. Replaces Millen 16520 $\$ 36.00$
Johnson 229.20218 mH variable inductor 10 to 80M for KW transmatch Johnson 229.203 28 mH variable inductor 10 to 160 M for KW transmatch \$39.00
B \& W Minductors - Air-Dux coil stock
Stocking TEN-TEC - Fast Availability!
VENUS Finest SSTV, Latest Models, SS-2, SLOW SCAN MONITOR KIT $\$ 269.00$
SS-2 Slow Scan monitor, factory wired $\$ 349.00$
C1, FAST SCAN/SLOW SCAN CAMERA
\& CONVERTER, Factory Wired
$\$ 469.00$
Weller All-Purpose Soldering Gun, 100/140 watts
Weller 80 watt Soldering Iron $\$ 9.95$
Handy Roll of Solder
$\$ 9.95$
$\$ 1.09$
We have VIBROPLEX in stock!
$\left\{\begin{array}{ccc}\text { NPC POWER SUPPLIES } \\ \text { Model } 102 \quad 115 \text { VAC Input - } 12 \text { VDC } & 4 \text { amps } \\ \text { out } & \$ 25.00 \\ \text { Model } 104 R & \text { same as above but regulated } \\ \text { Model } 108 R & -115 \text { VAC/13.6 VDC } & \$ 49.00 \\ \text { continuous } 12 \text { amps surge. Regulated } & \$ 72.00\end{array}\right\}$

CONSTANT VOLTAGE TRANSFORMER. Input: 115 VAC @ 60 Hz . Output: 24 VAC@ $15 \mathrm{amps} \pm$ 2% with matching AC capacitor $\$ 19.95$ Hammarlund Dual Section 320/320 per section Xmit'g Capacitor Multi 2000 FM, SSB \& CW Synthesized 2 meter transceiver Call or write Ameco Model PT Preamp, factory wired $\$ 69.95$ Regency HR-6 6 mtr FM transcvr, new cnd $\$ 199$ Swan 700-CX with matching 117XC power supply and speaker, plus WM-1500 Wattmeter. All mint, like new with 12 VDC power supply. All for
$\$ 699.00$
Lots of Meters! Lots of Parts! Lots of other Goodies!

BARRY BUYS UNUSED TUBES AND VACUUM CAPACITORS. Send Your List. Tube Headquarters. Diversified Stock. Heavy Inventory of Eimac tubes, chimneys, sockets, etc. $3 \cdot 500 \mathrm{Z}$ or $3 \cdot 400 \mathrm{Z}$ Specify $\$ 50.00$.

212-WA-5-7000
TELEX 12.7670

512 Broadway NY, NY 10012
EHECTMOMMCS

November Hours
Saturday, 10 a.m. - 4 p.m.
Monday-Friday, 9 a.m. - 6:30 p.m.

MAJOR TEST EQUIPMENT MANUFACTURER SEEKS SALES MANAGER - WITH TECHNICAL BACKGROUND TO SERVICE DISTRIBUTOR, INDUSTRIAL, O.E.M., AND COMMUNICATIONS MARKETPLACE. SEND COMPLETE RESUMÉ TO FRED D. MOLLER JR., MAIN ST., GREENVILLE, NH 03048.

Adveritisers check-off

A \& W 359	K-Enterarises _ 071
Adva - 265	K. E. -- 072
Aldelco - . 347	KLM - 073
Alkan - 368	Kenwood - 341
Ameco - 331	Kolar - - 334
Antenna Mart_... 009	Larsen - - 078
Aptron 380	Leland - 193
Atlas 198	Levy 291
Barry *	Little Giant -- 011
Budwig ... 233	Lyle -... 373
Bullet 328	MFJ-082
Buyers \& Sellers - 32:	MITS *
CFP- 022	Matric -- 084
Calcom -- 282	Maynard _-. 363
Circuit Spec. 026	Midiand - 086
Clegg - 027	M-Tech - 357
Commeraft 028	Northstrore 295
Comm. Specialists - .. 330	$\begin{array}{cc}\text { RF Tech. } & 296 \\ \text { Novice QSL } & 364\end{array}$
Comm. ${ }^{\text {Specialties }} 369$	$\begin{aligned} & \text { Novice QSL } \\ & \text { Optoelectronics } 364 \end{aligned}$
Continental -- 369	PRA _.-. 316
Specialties _._ 348	Palomar 093
Control Signal _ - 136	Pinon - 337
Corbin - 349	Poly Paks _...- 096
Crystal Products _ 370	Porta-Pak. 274
Cush Craft 035.	Pruitt - - 365
D-D Ent. 269	R F Comm. 305.
Dames - 324	RMS --. 239
Data Signal - 270	RP--098
Delavan - 235	R/T Labs _- 358
Dentron - 259	Callbook _- 100
Drake - 039	Radio King - 10235
DuPage. - 287	Regency 306
Dycomm - 040	Ronde \& Schwarz - 306
ES Ent - 208	SST - 375
Ehrhorn - 042	Sagal 376
Eimac 043	SAROC 146
Electrografix - 371	Slep ... 232
Electronic Djst. 04.	Southwest Tech. _. 263
Elect. Equip.	Space -107,
Bank 288	Specialty Comm.
Elect Spec. --.. 372	Systems - 318
ELPROCON - 301	Spectronics -.- 191
Epsilon - 046	Spectrum
Fair 048	Comm. --... 366
Fred Franke 289	Spectrum Int. 108
Genave - 057168	Stahler - 142
Hal'Tronix - 254	Summit _- 339
Ham, Radio - - 150	Telrex - 377
Hamtronics 246	Topeka FM - - 115
Heath .. - 060	Tropical
Heigfits 061	Hamboree - . 185
Henry .- 062	Tufts 321
Hildreth 283	VHF Engineering . 121
Howard Micro	Valu.Pak - - 264
Systems ...- 361	Vanguard . - 346
Hy-Gain . 064	Vibratrol 251
lcorr 065	Webster 255
Ynfo-Tech . 351	Weinschenker---122
International	Weirnu . 379
Crystaj -. 066	Werlatone - 367
James 333	Whitehouse - 378
Jan - 067	Wilson ..- 123
Janel ... 068	

*Please conta ct this advertiser directly Limit 15 inquiries per request.

November 1975

Please use bifore December 31, 1975
Tear off and, maid to
HAM RADIO MAGIZINE - "check off"
Greenville, N. H. 13048
NAME
CALL.
STREET
CITY
\qquad

Hy-Gain 270 A great mobile that's also a great base.

The same state-of-the-art qualities that make the Hy-Gain 270 antenna a great 2 meter mobile, make it a great 2 meter base.

Hy-Gain design has eliminated hard tuning, high VSWR and poor pattern due to irregular ground plane. The 270 's slim mobile configuration makes it ideal for apartment or urban installations where space is at a premium.

Fiberglass 270 develops gain through the use of 2 stacked $5 / 8$ wave radiators with a self-contained $1 / 4$ wave decoupling system. Gain that helps reach distant repeaters.

Since the antenna and feedpoint are sealed in fiberglass, the Hy-Gain 270 delivers top performance year after year without corrosion loss.

Get all the 2 meter base you need, for the price of a 2 meter mobile. The great Hy-Gain 270.

- 6 db gain
- 250 watt rated
- 144-148 MHz
- VSWR less than 1.5:1 at resonance, 6 MHz bandwidth
- $96^{\prime \prime}$ high
- Completely factory tuned
- 50 ohm input impedance
- Complete with $18{ }^{\prime}$ coax and PL-259

For information on Hy-Gain 2 meter and other amateur products contact your Hy-Gain distributor or write.

Hy-Gain Electronics Corporation: 8601 Northeast Highway Six; Lincoln. NE 68505: 402/464-9151; Telex 48-6424 - Branch Office and Warehouse; 6100 Sepulveda Blvd., \#322; Van Nuys, CA91401: 213/785-4532; Telex 65-1359 . Distributed in Canada by Lectron Radio Sales, Ltd.; 211 Hunter Street West; Peterborough, Ontario

6 Digit LED Clock Kit-12/24 hr.

s 950 mamens
 OF 1 TO 5

KIT INCLUDES:

- INSTRUCTIONS
- GUARANTEED COMPONENTS (Factory Prime)
- MONEY BACK GUARANTEE

6 - LED Readouts (FND-70. 25 in .)
1 - MM5314 Clock Chip (24 pin)
13 - Transistors
3 - Switches
3 - Capacitors ORDER KIT \#850
5 - Diodes AN INCREDIBLE VALUE! 9 - Resistors
Improved Printed Circuit Board for above (Drilled Fiberglass) \$2.95
Transformer (requires 7-11 VAC) for above $\$ 1.50$

6 Digit LED Clock-Calendar-Alarm Kit

 - 12/24 HR TIME • JUMBO DIGITS (MAN-64) • 28-30-31 DAY CALENDAR • AC FAILURE/BATTERY BACK-UP • 24 HR ALARM - 10 MIN. SNOOZE • ALTERNATES TIME (8 SEC) and DATE (2 SEC) OR DISPLAYS TIME ONLY AND DATE ON DEMAND • THIS KIT USES THE FANTASTIC CT-7001 CHIP. FOR THE PERSON THAT WANTS A SUPER CLOCK KIT (TOO MANY FEATURES TO LIST)!COMPLETE KIT, including Power Supply, Line Cord, Drilled PC Boards, etc.

ORDER KIT \#7001B
(CASE NOT INCLUDED)

Chassis Serves As Bezel To Increase Contrast of Digital Displays. Use Gray With Any Color - Red With Red Displays Only (Red LED's with Red Chassis Brightest)

PLEXIGLAS FOR DIGITAL BEZELS

Gray or Red Filter $\begin{aligned} & 3 \prime \prime \\ & \text { Approx. Size }\end{aligned} \quad 75 \notin 6^{\prime \prime} \times$ Sach $^{\prime \prime}$

KIT \#7001-C SAME AS \#7001-B BUT HAS DIFFERENT LEDs. USES 4 DL-747 .63" DIGITS \& 2 DL-707 . $3^{\prime \prime}$ DIGITS FOR SECONDS. \$42.
COMPLETE KIT, LESS CASE.

Xtal Time Base Kit for 12 VDC operation ($100.800 \mathrm{kHz} \times \operatorname{tal}$)
For \#7001 Kits Only $\$ 9.95$

The TEMPO line commercial quality at amateur prices

Compare this equipment with any other available. ;ompare their performance, their quality of construction, their ease of maintenance, and then compare prices. Your choice will have to be TEMPO.

TEMPO/CL 146A

a VHF/FM mobile transceiver for the 2 meter amateur band. It is compact, ruggedly built and completely solid state. One channel supplied plus two channels of your choice FREF
144 to 148 MHz coverage \square Multifrequency spread of $2 \mathrm{MHz} \square 12$ channel possible \square Metering of output and receive Internal speaker, dynamic microphone, mounting bracket and power cord supplied. A Tempo "best buy" at \$239.00.

As new as tomorrow! The superb CL-220 embodies the same general specifications as the CL-146A, but operates in the frequency range of $220-225 \mathrm{MHz}$ (any two MHz without retuning). At $\$ 299.00$ it is undoubtedly the best value available today.

TEMPO VHF/UHF AMPLIFIERS

VHF (135 to 175 MHz)
Solid state power amplifiers for use in most land mobile applications. Increase the range, clarity, reliability and speed of twoway communications.

Drive Power	Output	Model No.	Price
2W	130W	130 A02	\$199
10W	130W	130 A10	\$179
30w	130W	130430	\$189
2W	80W	80402	\$169
10w	80w	80 A10	\$149
30W	80W	80430	\$159

UHF (400 to 512 MHz) Orive Power Output Model No. Price

Orive Power Output Model No. Price			
2 W	70 W	70002	$\$ 270$
10 W	70 W	70010	$\$ 250$
30 W	70 W	70030	$\$ 210$
2 W	40 W	40002	$\$ 180$
10 W	40 W	40010	$\$ 145$
2 W	10 W	10002	$\$ 125$
FCC Type accepted modefs aiso available.			

Available at select dealers throughout the U.S.

[^10]

The first moonbounce signal was heard nearly 30 years ago when the U.S. Signal Corps Engineering Laboratory (under the direction of W4ERI, the Project Officer) received echoes from the moon on 111.5 MHz . A pair of EIMAC 1000Ts, driven by EIMAC 450 THs , were used in the transmitter. The first radio amateur EME (Earth-Moon-Earth) echoes were received by W4AO and W3GKP twenty-five years ago. Again, EIMAC was there.

The first two-way moonbounce QSO took place 15 years ago between W6HB and W1BU. EIMAC klystrons were used at both stations. From these early, controlled experiments, EME communication quickly grew as interested VHF operators turned to this new and exciting mode of communication.

Today, aided by EIMAC tubes, moonbounce QSO's are commonplace on the 144 MHz and 430 MHz bands using CW and SSB modes. On 2 meters, for example, W6PO has worked 7 countries and 28 states via moonbounce using an EIMAC 8877 in his transmitter. On 432 MHz , VE7BBG has worked 5 continents using two EIMAC 4CX250Bs.

VHF moonbounce is here! Interested? Send your QSL card for EIMAC's Amateur Service Bulletin AS-49 and get the latest information on this fascinating mode of communication. EIMAC, Division of Varian, 301 Industrial Way, San Carlos, California 94070. (415) 592-1221.

varian

[^0]: *A zener regulator will help hold the clock frequency if the lamp load should cause a large change in supply voltage.

[^1]: *KTI/Division Baldwin Electronics, Inc., 3393 De La Cruz Boulevard, Santa Clara, California 95050, telephone (408) 296-9305.

[^2]: *A printed-circuit board and parts kit are available from the author.

[^3]: *The op amps used in the binaural synthesizer shown in the facing page are available from Hildreth Engineering, Box 3, Sunnyvale, California 94088 . Price is $\$ 14.95$ each, postpaid. These units use two nine-volt transistor batteries.

[^4]: NOTE Personal checks take 2.3 weeks for clearance For immediate processing

[^5]: *Full-size detail drawings of the chassis are available from the author by sending him a self-addressed, stamped envelope. Etched, single sided, $1 / 16^{\prime \prime}$ printed-circuit boards without holes are also available for $\$ 2.00$ each, including postage. Write to M. A. Chapman, K6SDX, 428 3rd Street, Encinitas, California 92024.

[^6]: *The Motorola MV1652 is a silicon epicap tuning diode designed for general tuning, trimming and afc applications. Capacitance at -4 volts bias is nominally $120 \mathrm{pF}(108 \mathrm{pF}$ minimum, 135 pF maximum). Capacitance ratio from -2 to -20 volts reverse bias is 2.6 . The Motorola HEP R2505 closely meets these specifications. Editor

[^7]: 1. Ernie Schultz, W2MUU, ''Yaesu Sideband Switching," ham radio, December, 1973, page 56 (short circuit, December, 1974, page 62).
[^8]: SPECIAL OFFER: Ask about our unique Clock Kit Special. Prices as low as $\mathbf{\$ 2 0 . 0 0 !}$
 Each kit contains complete parts list with all parts, schematic illustrations and easy to follow, step by step instructions. No special tools required.

[^9]: $5051 / 2$ Centinela • Inglewood, Ca. 90302 • (213) 674-3021

[^10]: 11240 W. Olympic Blvd., Los Angeles, Calif. 90064 213/477-6701 931 N. Euclid, Anaheim, Calif. 92801

 714/772-9200 Butler, Missouri 64730

